R(Det)2

论文名称:R(Det)2 : Randomized Decision Routing for Object Detection

摘要:

        提出了一种结合决策树和深度神经网络的新方法用于目标检测的端到端学习方式。

首先,我们通过将软决策树插入神经网络来解开决策选择和预测值。 为了促进有效学习,我们提出了具有节点选择性和关联损失的随机决策路由,可以同时促进特征表示学习和网络决策。

其次,我们开发了具有窄分支的目标检测决策头,以生成路由概率和掩码,目的是从不同节点获得不同的决策。

引言:

目标检测重要的一个是backbone。另一个是决策头,它产生用于计算损失或推断检测框的预测。

配合区域采样,可以实现目标检测转化为多任务学习问题,其中的决策任务包括分类和边界框(bbox)回归。

对于现存的检测网络来说,决策头简单地通过顺序连接几个卷积或全连接层来构造。 对于一级检测器,决策头通常是通过堆叠几个卷积层来构建的。 两阶段检测器中区域提议的决策头是相似的。 对于两阶段检测器,R-CNN 阶段中的区域决策通常使用 2 个全连接层来实现。现在有很多在检测头研究的文章(8、12、37、43)

然而,这些工作大多侧重于任务解耦和任务感知学习,使得通用决策机制远离开发。

考虑到 DNN 的特征在高级视觉任务中显示出巨大潜力,广泛采用的单节点决策的简单设计可能会阻碍目标检测的性能。 一个自然的问题出现了:单节点预测对于目标检测中的特征探索是否足够好?

我们集成了软决策树来解开路由选择和预测值。 为了以端到端的方式共同学习软决策树和神经网络,我们提出了结合所谓的选择性损失和关联损失的随机决策路由。 实验验证了所提出方法的有效性,并解决了引入多节点预测的必要性。

从机器学习的角度来看,我们的 R(Det)2 是一种尝试连接神经网络和决策树这两种主流算法,这将为未来的研究带来洞察力。

文章贡献分为三个方面:

1、我们建议解开对象检测中多节点决策的路径选择和预测值。 特别是,我们为基于树的决策头的端到端联合学习提出了随机决策路由。

2、我们为目标检测构建了一个新的决策头,它引入了路由概率和掩码,以从多个节点生成不同的决策以进行整体决策提升。

3、大量实验验证了我们提出的 R(Det)2 的有效性。 特别是,当配备 Faster R-CNN 时,R(Det)2 实现了超过 3.6% 的 AP 改进。 也大幅度提高了大物体的检测精度。

Decision mechanism:目标检测框架中的决策头通常涉及多个计算层(即卷积层、全连接层和转换器模块)。 通常,对于具有密集先验[11、22、25、31、40]的单阶段检测器,堆叠卷积用于获得具有更大感受野的特征,并使用单独的卷积进行分类、定位和其他预测任务。 对于 RCNN 阶段 [1、27、30、33、46] 中的决策,堆叠的全连接层很常见。 双头 R-CNN [43] 使用全连接层进行位置不敏感分类和用于位置敏感定位的全卷积层。 Dynamic head [8] 统一了用于多任务决策的尺度、空间和任务感知自注意力模块。

3、随机决策树

3.1软决策树

为了解开决策选择和预测值,我们首先为目标检测中的多类分类和边界框回归构建软决策树,我们使用从 0 到 1 的软路由概率来表示决策选择,便于网络优化。

for regression

注意到路由概率 pj , qj 表示决策选择,表示路由第 j 个节点的概率。 它可以看作是测试阶段的决策置信度。

使用软决策树,可以通过不同方面的特征获得多个判别性和发散性决策。 为了便于讨论,我们将软决策树限制为二叉树,并且 j ∈ {l, r}

3.2随机决策路由

为了学习神经网络中的软决策树,我们提出了随机决策路由。 动机是双重的。首先,为了获得具有树结构的高性能决策头,我们需要避免来自不同节点的多个预测的高度相关性。 这意味着我们应该区分训练以减少不同节点的决策相关性。

其次,我们还需要保证整棵树的决策性能。

 总之,我们需要用低相关节点决策来实现高性能树决策。

我们提出了选择性损失来监督每个节点的学习和关联损失来指导整树优化。

为了实现这一点,我们提出了选择性损失来监督每个节点的学习和关联损失来指导整个树的优化

然后,我们将选择性和关联损失统一到一个通用的训练框架中。 由于我们涉及随机因素来模拟路由不同节点的概率,我们将此训练策略命名为随机决策路由。

为了实现低相关性的节点决策,我们首先进行节点选择,以识别出具有较高优化优先级的节点。然后我们将选定的节点附加一个更高的路由概率,相反,剩余节点附加较低的路由概率。不同的路由概率导致不同节点的学习率不同。因此,要多样化不同节点的决策,通过selective loss。

Figure 2

我们提出了随机决策路由,其中包括选择性和关联损失。 选择性损失识别占主导地位的决定性预测,并以随机方式相应地对节点损失进行加权。 关联损失通过测量融合输出和ground truth之间的差异来学习路由概率。

4、检测头

c

此外,我们在预测之前为特征添加路由掩码,以增加来自多个节点的决策分歧。 决策值 cl、cr 和 bl、br 是使用路由掩码特征生成的。 如图 3(c) 所示,我们对分批的区域特征进行平均,以获得单个类似上下文的向量。 另一个带有 Sigmoid 的 fc 层被施加在这个向量上,为不同的节点生成路由掩码。 通过在决策之前将路由掩码乘以最后的特征,我们进一步多样化了不同决策节点的输入。 可以进一步降低节点决策的依赖性。 我们将其记录为随机决策路由的 Masked head,如 R(Det)2-M

d

受解开检测分类和定位任务的努力的启发,我们开发了另一个 R(Det)2-T。 我们将多任务预测之前的最后一个特征计算分开,并将任务感知特征学习统一到我们的框架中,如图 3(d) 所示。 由于这不是这项工作的主要重点,我们没有涉及更复杂的任务感知头部设计[37,43,46]。 然而值得注意的是,提出的 R(Det)2 可以很容易地插入这些检测器以提高性能。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值