4、kafka分区、副本介绍及示例、高级API与低级API

本文深入讲解Kafka中的分区和副本机制,包括生产者写入策略、消费者组再均衡机制及分区分配策略等内容,并对比了高级API与低级API的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Apache Kafka系列文章

1、kafka(2.12-3.0.0)介绍、部署及验证、基准测试
2、java调用kafka api
3、kafka重要概念介紹及示例
4、kafka分区、副本介绍及示例
5、kafka监控工具Kafka-Eagle介绍及使用



本文主要介绍分区与副本机制、高级api使用示例手动消费分区数据等。
本文前提是kafka环境可用。
本文分为2个部分,即分区与副本机制、高级API与低级API。

一、分区和副本

1、生产者分区写入策略

生产者写入消息到topic,Kafka将依据不同的策略将数据分配到不同的分区中
1、轮询分区策略
2、随机分区策略
3、按key分区分配策略
4、自定义分区策略

1)、轮询策略

默认的策略,也是使用最多的策略,可以最大限度保证所有消息平均分配到一个分区
如果在生产消息时,key为null,则使用轮询算法均衡地分配分区

2)、随机策略

随机策略,每次都随机地将消息分配到每个分区。在较早的版本,默认的分区策略就是随机策略,也是为了将消息均衡地写入到每个分区。但后续轮询策略表现更佳,所以基本上很少会使用随机策略。

3)、按key分配策略

按key分配策略,有可能会出现「数据倾斜」,例如:某个key包含了大量的数据,因为key值一样,所有所有的数据将都分配到一个分区中,造成该分区的消息数量远大于其他的分区。

4)、乱序问题

轮询策略、随机策略都会导致一个问题,生产到Kafka中的数据是乱序存储的。而按key分区可以一定程度上实现数据有序存储——也就是局部有序,但这又可能会导致数据倾斜,所以在实际生产环境中要结合实际情况来做取舍。

5)、自定义分区策略

下例是实现自定义分区的代码

import java.util.Map;
import java.util.Properties;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.Cluster;

/**
 * @author alanchan
 *
 */
public class KeyWithRandomPartitioner implements Partitioner {
    private Random r;
    public final static String TOPIC_NAME = "test_partition";
    public static void main(String[] args) {
        // 1. 创建用于连接Kafka的Properties配置
        Properties props = new Properties();
        props.put("bootstrap.servers", "server1:9092");
        props.put("acks", "all");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        //设置kafka分区规则
        props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, KeyWithRandomPartitioner.class.getName());
        
        // 2. 创建一个生产者对象KafkaProducer
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);
        
        // 3. 调用send发送1-10消息到指定Topic test_partition
        for (int i = 0; i < 10; ++i) {
            try {
                // 获取返回值Future,该对象封装了返回值
                Future<RecordMetadata> future = producer.send(new ProducerRecord<String, String>(TOPIC_NAME, null, i + ""));
                // 调用一个Future.get()方法等待响应
                future.get();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
        }

        // 5. 关闭生产者
        producer.close();
    }

    @Override
    public void configure(Map<String, ?> configs) {
        r = new Random();
    }

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        // cluster.partitionCountForTopic 表示获取指定topic的分区数量
        return r.nextInt(1000) % cluster.partitionCountForTopic(topic);

    }

    @Override
    public void close() {

    }

}
验证

1、创建topic

kafka-topics.sh --create --bootstrap-server server1:9092 --topic test_partition --partitions 3 --replication-factor 1

2、运行生产者程序,生成消息
3、通过客户端查看各个分区的数据记录数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、消费者组Rebalance机制

1)、Rebalance再均衡

Kafka中的Rebalance称之为再均衡,是Kafka中确保Consumer group下所有的consumer如何达成一致,分配订阅的topic的每个分区的机制。
Rebalance触发的时机有:

  • 消费者组中consumer的个数发生变化
    例如:有新的consumer加入到消费者组,或者是某个consumer停止了。

  • 订阅的topic个数发生变化
    消费者可以订阅多个主题,假设当前的消费者组订阅了三个主题,但有一个主题突然被删除了,此时也需要发生再均衡。

  • 订阅的topic分区数发生变化

2)、Rebalance的不良影响

发生Rebalance时,consumer group下的所有consumer都会协调在一起共同参与,Kafka使用分配策略尽可能达到最公平的分配
Rebalance过程会对consumer group产生非常严重的影响,Rebalance的过程中所有的消费者都将停止工作,直到Rebalance完成

3、消费者分区分配策略

1)、Range范围分配策略

Range范围分配策略是Kafka默认的分配策略,它可以确保每个消费者消费的分区数量是均衡的。
Rangle范围分配策略是针对每个Topic的。

  • 配置
    配置消费者的partition.assignment.strategy为org.apache.kafka.clients.consumer.RangeAssignor。
  • 算法公式
    n = 分区数量 / 消费者数量
    m = 分区数量 % 消费者数量
    前m个消费者消费n+1个
    剩余消费者消费n个

2)、RoundRobin轮询策略

RoundRobinAssignor轮询策略是将消费组内所有消费者以及消费者所订阅的所有topic的partition按照字典序排序(topic和分区的hashcode进行排序),然后通过轮询方式逐个将分区以此分配给每个消费者。

  • 配置
    配置消费者的partition.assignment.strategy为org.apache.kafka.clients.consumer.RoundRobinAssignor

3)、Stricky粘性分配策略

从Kafka 0.11.x开始,引入此类分配策略。主要目的:

  • 分区分配尽可能均匀
  • 在发生rebalance的时候,分区的分配尽可能与上一次分配保持相同

没有发生rebalance时,Striky粘性分配策略和RoundRobin分配策略类似。
在这里插入图片描述
上面如果consumer2崩溃了,此时需要进行rebalance。如果是Range分配和轮询分配都会重新进行分配,例如:
在这里插入图片描述
通过上图,我们发现,consumer0和consumer1原来消费的分区大多发生了改变。接下来我们再来看下粘性分配策略。
在这里插入图片描述
Striky粘性分配策略,保留rebalance之前的分配结果。只是将原先consumer2负责的两个分区再均匀分配给consumer0、consumer1。这样可以明显减少系统资源的浪费,例如:之前consumer0、consumer1之前正在消费某几个分区,但由于rebalance发生,导致consumer0、consumer1需要重新消费之前正在处理的分区,导致不必要的系统开销。(例如:某个事务正在进行就必须要取消了)

4、副本机制

副本的目的就是冗余备份,当某个Broker上的分区数据丢失时,依然可以保障数据可用。因为在其他的Broker上的副本是可用的。

1)、producer的ACKs参数

对副本关系较大的就是producer配置的acks参数了,acks参数表示当生产者生产消息的时候,写入到副本的要求严格程度。它决定了生产者如何在性能和可靠性之间做取舍。

  • 配置
Properties props = new Properties();

props.put("acks", "all");
  • acks配置为0
    在这里插入图片描述

ACK为0,基准测试

kafka-producer-perf-test.sh 
--topic benchmark  
--num-records 5000000 
--throughput -1 
--record-size 1000 
--producer-props  
bootstrap.servers=serv1:9092,serv2:9092,serv3:9092  
acks=0

测试结果
在这里插入图片描述

  • acks配置为1
    在这里插入图片描述

当生产者的ACK配置为1时,生产者会等待leader副本确认接收后,才会发送下一条数据,性能中等。

  • acks配置为-1或者all
    在这里插入图片描述
kafka-producer-perf-test.sh
--topic benchmark 
--num-records 5000000 
--throughput -1 
--record-size 1000
--producer-props
bootstrap.servers=serv1:9092,serv2:9092,serv3:9092 
acks=all

在这里插入图片描述

二、高级(High Level)API与低级(Low Level)API

1、高级API

/**
 * 消费者程序:从test主题中消费数据
 */
public class _2ConsumerTest {
    public static void main(String[] args) {
        // 1. 创建Kafka消费者配置
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "serv1:9092");
        props.setProperty("group.id", "test");
        props.setProperty("enable.auto.commit", "true");
        props.setProperty("auto.commit.interval.ms", "1000");
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        // 2. 创建Kafka消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

        // 3. 订阅要消费的主题
        consumer.subscribe(Arrays.asList("test"));

        // 4. 使用一个while循环,不断从Kafka的topic中拉取消息
        while (true) {
            // 定义100毫秒超时
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }
 }
  • 上面是之前编写的代码,消费Kafka的消息很容易实现,写起来比较简单
  • 不需要执行去管理offset,直接通过ZK管理;也不需要管理分区、副本,由Kafka统一管理
  • 消费者会自动根据上一次在ZK中保存的offset去接着获取数据
  • 在ZK中,不同的消费者组(group)同一个topic记录不同的offset,这样不同程序读取同一个topic,不会受offset的影响
  • 高级API的缺点
    不能控制offset,例如:想从指定的位置读取
    不能细化控制分区、副本、ZK等

2、低级API

通过使用低级API,我们可以自己来控制offset,想从哪儿读,就可以从哪儿读。而且,可以自己控制连接分区,对分区自定义负载均衡。而且,之前offset是自动保存在ZK中,使用低级API,我们可以将offset不一定要使用ZK存储,我们可以自己来存储offset。例如:存储在文件、MySQL、或者内存中。但是低级API,比较复杂,需要执行控制offset,连接到哪个分区,并找到分区的leader。

3、手动消费分区数据

Kafka根据消费组中的消费者动态地为topic分配要消费的分区。有时需要指定要消费的分区,例如:

  • 如果某个程序将某个指定分区的数据保存到外部存储中,例如:Redis、MySQL,那么保存数据的时候,只需要消费该指定的分区数据即可
  • 如果某个程序是高可用的,在程序出现故障时将自动重启(例如:Flink、Spark程序)。这种情况下,程序将从指定的分区重新开始消费数据。

手动消费分区中的数据不再使用之前的 subscribe 方法订阅主题,而使用assign方法指定想要消费的数据

 String topic = "test";
 TopicPartition partition0 = new TopicPartition(topic, 0);
 TopicPartition partition1 = new TopicPartition(topic, 1);     
 consumer.assign(Arrays.asList(partition0, partition1));

一旦指定了分区,就可以就像前面的示例一样,在循环中调用「poll」方法消费消息
说明
1、当手动管理消费分区时,即使GroupID是一样的,Kafka的组协调器都将不再起作用
2、如果消费者失败,也将不再自动进行分区重新分配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一瓢一瓢的饮 alanchanchn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值