论文笔记:Bayesian Online Changepoint Detection

本文是对Ryan P. Adams和David J. C. MacKay关于Bayesian Online Changepoint Detection论文的深入解读,主要针对公式推导进行补充和疑问探讨。作者补充了中间步骤以帮助理解,并质疑了公式中某些部分的独立性假设,特别是关于段落间分布参数的独立性和条件概率的表达。同时,文章指出原论文公式可能存在笔误,并提出了修正意见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

    本文是对以下论文的阅读笔记。

 Ryan P. Adams, David J.C. MacKay, Bayesian Online Changepoint Detection, arXiv 0710.3742v1 (2007)

    关于更基础的解说可以参见:

        [论文笔记]贝叶斯在线变点检测:一个直观的理解

    本文可以看作是以上博文的进一步补充,重点在于原文的公式推导的个人理解及一些补充。

 

2. 公式推导补充

        原论文的公式推导有些跳跃,对于用于良好的数学和概率统计的功底的科班来说当然不是问题,对于本渣这样的山寨出身读起来确实头疼。相信也有对此有同感的人吧。以下追加了一些中间步骤,以及最后提出了一点疑问。公式编号与原论文一致。闲话少说,直接上(虽然优美但是确实万恶的)公式。。。

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        以上推导中,gif.latex?x_%7B1%3At%7D自然是指从时刻1到时刻t的样本序列。而gif.latex?%5Cbold%7Bx%7D_t%5Er是指当前到达当前run-length gif.latex?r所对应的样本序列,即从上一个change-point开始到当前时刻为止的序列。即gif.latex?%5Cbold%7Bx%7D_t%5Er%20%3D%20x%5Bk%3At%5D%2C%20k%20%5Cin%20%5B1%2C2%2C3%2C...%2Ct%5Dgif.latex?k表示上一个变化点发生的时刻。 

 watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

         以上推导中隐含了以下两式:

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        式(3-1)应该是指2021090517030652.png 包含了决定20210905170352621.png ​​​​​​ 的概率所需要的所有的信息,与2021090517030654.png 无关。但是为什么呢?与2021090517030655.png 无关比较好理解,但是为什么连20210905170419280.png ​​​​​​ 都无关呢?

         关于式(3-2),论文中给出的解释如下所示。

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        这个是不是因为segmentation/partition间的分布参数是独立的假设相关呢?

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_10,color_FFFFFF,t_70,g_se,x_16

        此外,原论文中式(3)是写成

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_11,color_FFFFFF,t_70,g_se,x_16

的,我觉得其中20210905170658998.png 应该是20210905170628724.png 的笔误(参见上面的式(3))。20210905170724550.png ​​​​​​​中已经包含了20210905170744942.png ​​​​, 20210905170744942.png 同时出现在条件概率的两侧,好像无法理解。 

 

(持续更新中)

 

 

 

 

 

 

 

 

 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值