TDOA算法综述--(2)--Chan‘s Method

目录

 

1. 概要

2. 变量代换

3. 方程求解


1. 概要

        本文介绍TDOA求解算法之Chan's Method的求解推导过程。

        关于背景介绍参见TDOA算法综述(An overview of TDOA algorithm)--(1)

 

2. 变量代换

        根据以上关于Ri和Ri,1的定义,可以将式(1)重新整理为如下形式:

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        其中,20210914161555730.png20210914161555731.png 表示各Anc距离坐标原点的距离的。

        由此就得到了如下(以20210914161628742.png 作为未知常量)关于x,y的二元一次线性方程组,当然这不是真正的线性方程组,因为20210914161555732.png 中含有x,y的非线性项。 

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

3. 方程求解

        Chan’s method的求解的思想可以简要地总结如下:

        Step1: 首先,把R1当作方程中的常量(although unknown),求解关于(x,y)的线性方程组(2)

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        Step2: 将所解得的(x,y)的表达式(其中含有R1)代回R1的定义式,可以得到关于R1的一元二次方程,如以下形式: 

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        Step3: 求解该一元二次方程可以得到R1,然后再将R1代回以上 (x,y)的表达式(其中含有R1),即可求得待定位tag的位置(x,y) 

        但是,式(4)会给出两个解来。如果两个解是一正一负的话,那自然舍弃负的解即可。如果两个都是正的解(即解存在模糊性,ambiguity)的话,那么就需要额外的辅助信息来确定哪一个是有效解。但是根据[Jacek Stefanski],应该只需要考虑以下解(有待进一步确认):

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        以上方程的具体求解比较复杂,这里就不再细说。需要了解详细的求解过程可以参见原始论文[Y.T.Chan]。在CSDN博客(https://blog.csdn.net/lpsl1882/article/details/51519303)中给出了一个理想情况下的闭式求解公式,这里直接摘抄结论如下:

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        进一步可得式(4)的三个系数表达式如下所示: 

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        由此可以解出R1的两个值,取其中合理的值,就可以进一步解出: 

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

 

        在(A naive matlab implementation of TDOA Chan‘s Method)给出了以上理想条件下的闭式解的对应的matlab实现。

        但是在实际情况中,由于存在测量误差,一般来说不要可能以闭式解的方式求解出来。这就需要数值近似解法,这个后文再谈。

 

 

[Reference]

[Y.T.Chan, K.C.Ho]. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8):1905-1915

[Jacek Stefanski], Hyperbolic Position Location Estimation in the Multipath Propagation Environment. IFIP 2009.

【综合算法】不考虑误差的TDOA定位_artzers的专栏-CSDN博客

 A naive matlab implementation of TDOA Chan‘s Method

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值