TDOA算法综述(An overview of TDOA algorithm)--(1)

目录

1. 概要

2. Mathematical Formulation

3. Chan's Method

4. Fang's Method


1. 概要

        TDOA(Time Difference Of Arrival)是基于各参考基站(以下称为Anchor或Anc)与待定位对象(以下称为Tag)之间的距离之差通过求解非线性双曲方程组来推断待定位对象相对于各参考基站的相对位置的定位方法。由于电磁波飞行速度是已知且恒定的,飞行距离与飞行时间之间是可以相互转换的,而如果发送时间是共同的(或者间隔是已知的),则飞行时间又进一步与信号到达时间是可以相互转换的,因此只需要测量Tag发出的信号到达各Anchor的到达时间之差即可得到对应的距离之差。

        本文考虑U-TDOA方案,由待定位对象Tag(通常在UWB定位技术中用Tag和Anchor,在其它场合也有分别称为MS[Mobile Station,移动端],和BS[Base Station,基站]的)发送信号,多个Anc接收信号。为了简便起见,先只考虑2D定位情况,这种情况下最少需要3个基站(严格地来说3个是不够的,后面将会解释到),分别记为A1,A2,A3,且假定其中的A1为参考Anchor。后续再考虑扩展到3D定位的情况。

        与U-TDOA相对的还有D-TDOA(参考另一篇博文),D-TDOA比U-TDOA要更加复杂一些,对时钟频率偏差也更加敏感一些。

2. Mathematical Formulation

        在TDOA定位系统中,进行定位解算时,首先需要根据到达时间差建立双曲线方程组。

        首先,定义如下:

        Tag坐标:20210910165053999.png

         各Anc坐标:2021091016502082.png

        各Anc到Tag的距离记为:20210910165119995.png

        各Anc与A1到Tag的距离差记为:20210910165135522.png

         注1:各Anc到Tag的距离不是测量结果,只是求解过程中用到的中间变量而已

        注2:​​20210910165310749.png 不是直接测量结果,而是根据直接测量结果20210910165216147.png (Time difference of Arrival between Ai and A1)换算而来的。

        基于以上定义,以及TDOA测量结果20210910165349349.png20210910165349350.png ,可得如下非线性双曲线方程组:

watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        TDOA定位问题就归结为求解以上两个双曲线方程的交点的问题。

        非线性双曲线方程组的求解通常都很困难。另一方面,由于实际应用系统的TDOA测量存在误差,会使得这个方程组可能并不存在严格的解,所以会需要优化近似求解的方法。

        常见的TDOA方程组求解算法有Chan’s Method, Fang’s Method, Foy’s Method(Also, Taylor series method)。另外还有一种是Friedlander’s Method,由于求解精度和运算复杂度都与前三种差距较大,因此不太常见。

        求解非线性方程组的第一步通常都是要做线性化处理。

        一种常见的线性化处理是进行泰勒级数展开并保留前两项,这正是Foy’s Method中所采用的策略。

        另一种替代方案则是Chan’s Method, Fang’s Method以及Friedlander’s Method所采用的则是基于变量代换将待解方程组变换为另一个方程组进行求解。 

 

3. Chan's Method

TDOA算法综述--(2)--Chan‘s Methodhttps://blog.csdn.net/chenxy_bwave/article/details/120290143https://blog.csdn.net/chenxy_bwave/article/details/120290143

4. Fang's Method

            TDOA算法综述--(3)--Fang‘s Methodhttps://blog.csdn.net/chenxy_bwave/article/details/120291208https://blog.csdn.net/chenxy_bwave/article/details/120291208

 

           其它相关话题参见:What are Triangulation, Trilateration, and Multilateration?

 

[Reference]

[Jacek Stefanski], Hyperbolic Position Location Estimation in the Multipath Propagation Environment. IFIP 2009.

 

 

 

 

双曲交点算法是一种用于计算双曲线交点的方法。在TDOA(Time Difference of Arrival)定位中,双曲交点算法常用于计算接收器的位置。根据引用\[1\],常见的TDOA方程组求解算法包括Chan's Method、Fang's Method、Foy's Method和Friedlander's Method。 其中,Chan's Method是一种常见的双曲交点算法。根据引用\[2\],Chan's Method通过求解TDOA方程组,利用数学方法计算出双曲线的交点。该方法基于二次曲线的性质,通过构建方程组并求解,得到双曲线的交点坐标。 另外,根据引用\[3\],双曲线上的一点P作直线l交双曲线于M、N两点,那么在直线l上必然存在且唯一一个点Q,使得(PQ,MN)=-1,即P、Q、M、N构成一调和点列。当直线l绕着点P旋转时,点Q的轨迹是一条直线p,这条直线p被称为点P关于双曲线的极线,而点P被称为p关于该曲线的极点。 综上所述,双曲交点算法利用TDOA方程组和双曲线的性质,通过求解方程组或计算极线,得到双曲线的交点坐标。这些算法TDOA定位中起到了重要的作用。 #### 引用[.reference_title] - *1* *2* [TDOA算法综述(An overview of TDOA algorithm)--(1)](https://blog.csdn.net/chenxy_bwave/article/details/120225611)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [【双曲几何学 02】什么是极点和极线?](https://blog.csdn.net/gongdiwudu/article/details/131242744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值