目录
509. 斐波那契数
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
class Solution:
def fib(self, n: int) -> int:
if n<=1:
return n
prev,cur = 0,1
for k in range(2,n+1):
cur,prev = prev + cur, cur
return cur
执行用时:32 ms, 在所有 Python3 提交中击败了89.08%的用户
内存消耗:14.8 MB, 在所有 Python3 提交中击败了78.43%的用户
另外,还有“矩阵快速幂”、“通项公式”等求解方法。
1137. 第N个泰波那契数
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n
,请返回第 n 个泰波那契数 Tn 的值。
示例 1:
输入:n = 4 输出:4 解释: T_3 = 0 + 1 + 1 = 2 T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25 输出:1389537
提示:
0 <= n <= 37
- 答案保证是一个 32 位整数,即
answer <= 2^31 - 1
。
class Solution:
def tribonacci(self, n: int) -> int:
if n<=1:
return n
if n==2:
return 1
x,y,z = 0,1,1
for k in range(3,n+1):
x,y,z = y,z, x+y+z
return z
执行用时:32 ms, 在所有 Python3 提交中击败了84.96%的用户
内存消耗:14.9 MB, 在所有 Python3 提交中击败了34.30%的用户
同样,本题也可以用“矩阵快速幂”的方法求解。
70. 爬楼梯
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
提示:1 <= n <= 45
思路与算法
第一步可以向上爬1级或者爬2级。
第一步爬1级的话还剩下n-1级;第一步爬1级的话还剩下n-2级。记爬n阶的爬法为F(n),很显然可以得到以下递推关系式(即动态规划的转移方程):
很显然,这个关系与斐波那契数列的递推关系相同。
当只有1级台阶时,显然只有一种爬法,即F(1)=1;当有2级台阶时,有两种爬法(直接爬2级,或者分两次各爬1级),即F(2)=2。这个构成了baseline条件。
代码
class Solution:
def climbStairs(self, n: int) -> int:
if n<=2:
return n
prev,cur = 1,2
for k in range(3,n+1):
cur,prev = prev + cur, cur
return cur
执行用时:36 ms, 在所有 Python3 提交中击败了64.34%的用户
内存消耗:15 MB, 在所有 Python3 提交中击败了21.55%的用户
留两个思考题:
你能把 f(x)=2f(x−1)+3f(x−2)+4c 化成齐次线性递推吗?
如果一个非齐次线性递推可以转化成齐次线性递推,那么一般方法是什么?
746. 使用最小花费爬楼梯
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20] 输出:15 解释:你将从下标为 1 的台阶开始。 - 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1] 输出:6 解释:你将从下标为 0 的台阶开始。 - 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。 - 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。 - 支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
思路与算法
假定从下标为k的台阶开始爬到顶部的最小开销记为f(k),从下标为k的台阶出发有两个选择:
- (1) 向上爬一个台阶,从台阶k+1爬到顶的最小开销为f(k+1)
- (2) 向上爬两个台阶,从台阶k+2爬到顶的最小开销为f(k+2)
由此可以得到以下转移方程:
很显然,,
,这两者构成了baseline case。
也可以从顶部往下看,得到另外一种状态转移方程。站在台阶k回头看,可以从台阶k-1跨一步上来,也可以从台阶k-2跨两步上来。记到达台阶k所需要的最小开销为g[k],可以得到转移方程如下所示:
Baseline case: g(0) = 0; g(1) = cost[0].
基于这后一种转移方程已迭代的方式的实现,类似于斐波那契数的迭代式计算方式。
不过以上两种状态转移方程都假定了一定是从台阶0出发。但是,本题有一个小小的坑,即可以选择从台阶0出发或者从台阶1出发!
为了对付这种情况,可以考虑在阶梯最底部再插入一个开销为0的台阶。这相当于在cost数组前面插入一个0元素。这样做有一个额外的时间开销(长度为n的数组在最前头插入一个数的开销为),不显式地插入这个0也是可以的,但是会使得代码稍微dirty一点。
代码
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
cost.insert(0,0)
print(cost)
n = len(cost)
if n==0: return 0
if n==1: return cost[0]
x,y = 0, cost[0]
for k in range(2,n+1):
x,y = y, min(x+cost[k-2],y+cost[k-1])
return y
执行用时:44 ms, 在所有 Python3 提交中击败了55.42%的用户
内存消耗:15 MB, 在所有 Python3 提交中击败了50.21%的用户