1. 前言
本文的内容是上一篇博客(混检阳性概率的计算(贝叶斯定理的一个应用例)目前核酸混检的基本做法是十混一,如果阳性人群分布完全随机,那么做十混一混检为阳性的概率有多大呢?假设人群整体感染率为p,十个人中任意一个人为阳性的话,混检结果为阳性。只有十个人都是阴性时,混检结果才为阴性。这样为了方便,我们假定混检的漏检概率为0,即任何一个人是阳性的话肯定能够得到混检阳性的结果;虚警概率也为0,即十个人全阴性的条件下不会报告阳性。由于人群整体感染率为p,所以任意某人为阴性的概率为(1-p),十个人全部是阴性的概率为。因此,十混一混检阳性率为:.https://blog.csdn.net/chenxy_bwave/article/details/128276952)的续篇。本来是追加在它的后面,结果重新提交后死活就是“审核未通过”。。。不知道碰上了什么敏感点,所以只好另起一篇碰碰运气?
2. 十混一混检什么条件下能减少采样管数?
十混一混检的目的是用尽量少的采样管数来覆盖所有人的检测。但是只有在人群群体感染率比较低的时候才能达到这一目的。以下我们来计算一下能够实现这一目的的临界条件。
如果某一管结果为阴性的话,则(不需要复检)该管的十个人的人均管数为0.1。
如果某一管结果为阳性的话,则该管的十个人都需要重做一次单管,所以人均管数为1.1。
记群体感染率为p,十混一混检阳性为Pmixed,要满足减少采样管数的目的,相当于是要求满足以下数学关系:
简单计算可得:
而根据上一篇的计算我们知道群体感染率大概是20.5%左右时十混一混检阳性概率会达到90%。也就是说,当群体感染率达到21.5%,十混一混检就无法实现减少采样管数的目的。
3. 十混一混检什么条件下能实现经济价值?
上节的计算是考虑理论上(只考虑管数,并且忽略报告阳性时复检所需要的成本等)什么条件下十混一混检能减少采样管数。现实情况中,由于需要考虑混检每管成本与单检每管成本有差异,以及还需要考虑当出现阳性时,复检所需要付出的时间等成本,实际上十混一混检从经济的角度考虑是不是更划算的(群体感染率)临界点会进一步变低。
复检的其它附加成本(时间成本等)比较难以计算,以下我们仅考虑混检一管价格和单检一管价格不同时,什么条件下混采从经济上更划算。
这个计算跟上一节计算原理相同,只不过附加了一个每管价格作为加权系数。
分别记混检每管价格和单检每管价格为和,则混检时的人均成本为:
混检从经济上更划算的条件为混检时的人均成本小于单检的人均成本:
代入求解可以得到:
很显然,时就退化为上一节所述情况了。
假设混检需要20元一管,单检需要10元一管(这个价格随便说的,只是为了方便示例。不清楚具体是个什么情况),则可以得到混检从经济上是否划算(相比全部单管)的临界点是混检阳性概率80%。而根据上一篇的计算我们知道群体感染率大概是15%左右时十混一混检阳性概率就达到80%了。也就是说(在以上条件设定下),只有当群体感染率低于15%,十混一混检才是(从经济上来说)更划算的。进一步如果考虑重检的附加成本的话,这个临界点将进一步降低。