大模型已成为推动智能体开发的核心力量。智能体,作为AI领域的一个重要分支,正逐步从简单的自动化工具转变为能够理解和响应复杂场景的高级系统。本文将探讨基于大模型的智能体开发实操思路与技巧,从初步实践到重度开发,揭示智能体开发的全貌。
01 普通开发者的三个成长阶段
智能体开发是一个由浅入深的过程,每个阶段都有其独特的挑战和学习重点。
在初步实践阶段,开发者对大模型和智能体的概念有了初步的了解。这个阶段的重点是探索大模型的潜力,学习如何将智能体集成到现有的技术栈中,并开始尝试解决一些基本的问题。
深入实践阶段是开发者开始掌握智能体开发技巧的时期。在这一阶段,开发者将学习如何构建更加复杂的智能体,应用高级的算法和框架,并开始在更广泛的业务场景中部署智能体。
重度开发阶段标志着智能体开发的高级阶段。在这一阶段,开发者将探索创新的方法来提升智能体的自主性和协同性,构建能够独立运行和与其他系统协同工作的复杂智能体。
02 初步实践阶段
在初步实践阶段,开发者的首要任务是建立对大模型的基本理解。这包括了解大模型的工作原理、能力以及如何将它们应用于智能体开发。以下是一些关键点:
- 认识生成式AI与ChatGPT:生成式AI能够生成新的文本、图像等内容,而ChatGPT是其中的佼佼者,以其对话能力和语言理解能力著称。
- 小范围测试与工作效率的提升:在小范围内测试智能体,观察它们如何提高工作效率,例如自动化报告生成或回答常见问题。
在初期,很多开发者可能会选择保密他们的探索,以避免引起“不必要的关注”,同时在团队内部进行深入讨论,评估新技术的潜在影响。
03 深入实践阶段
当开发者对智能体开发有了初步的了解和实践经验后,便进入了深入实践阶段。在这一阶段,重点转向了简单的创建思路、技巧的掌握和应用的拓展。
智能体创建的初期思路
智能体的创建不是一蹴而就的。开发者需要深入理解业务需求,构建完整的思维链,明确智能体需要完成的任务和前置条件。
- 构建思维链:将业务功能分解为一系列逻辑步骤,智能体需要按照这些步骤执行任务。
- few-shot方法:利用少量示例引导智能体学习如何完成任务,减少对大量训练数据的依赖。
提示词技巧与思维链法的应用
智能体的开发不仅是技术问题,也是与智能体“沟通”的艺术。提问的艺术在于如何引导智能体提供有用的回答。通过明确问题的前置信息、主客体关系和回答要求,可以提高智能体的回答质量;而通过设定规则和激励机制,可以引导智能体提供更好的输出。
- 思维链法:展示任务的示例和完成流程,使其能够学习和模仿,解决新的任务。
- 制定规则法:通过设定明确的输出要求,使智能体的输出更加规范和可控。
- PUA法:通过不断的鞭策和激励,促使智能体进行自我反思和改进。
单prompt智能体的局限性与解决方案
单prompt智能体虽然简单,但在处理复杂任务时可能存在局限性。开发者需要了解这些局限性并寻找解决方案。
- 任务复杂性:避免设计过于复杂的任务,将大任务分解为小任务,逐步完成。
- 数字处理难度:对于需要精确数字处理的任务,可以采用程序化的方法辅助智能体。
通过深入实践阶段的学习和探索,开发者将掌握更多智能体开发的高级技巧,为进入重度开发阶段做好准备。
04 重度开发阶段
随着智能体开发技能的不断提升,开发者将进入重度开发阶段,这一阶段的重点是创新和协同工作能力的培养。
langchain框架的深入应用
langchain框架允许开发者通过链式调用提供更多的思考时长给大模型,同时在合适的时机给予大模