探 寻 宝 藏



探 寻 宝 藏

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 5
描述

传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物。某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角。当然,迷宫中的通路不是平坦的,到处都是陷阱。Dr.Kong决定让他的机器人卡多去探险。

但机器人卡多从左上角走到右下角时,只会向下走或者向右走。从右下角往回走到左上角时,只会向上走或者向左走,而且卡多不走回头路。(即:一个点最多经过一次)。当然卡多顺手也拿走沿路的每个宝物。

Dr.Kong希望他的机器人卡多尽量多地带出宝物。请你编写程序,帮助Dr.Kong计算一下,卡多最多能带出多少宝物。
输入
第一行: K 表示有多少组测试数据。 
接下来对每组测试数据:
第1行: M N
第2~M+1行: Ai1 Ai2 ……AiN (i=1,…..,m)


【约束条件】
2≤k≤5 1≤M, N≤50 0≤Aij≤100 (i=1,….,M; j=1,…,N)
所有数据都是整数。 数据之间有一个空格。
输出
对于每组测试数据,输出一行:机器人卡多携带出最多价值的宝物数
样例输入
22 30 10 1010 10 803 30 3 92 8 55 7 100
样例输出
120134

解题思路

摘自http://blog.csdn.net/greenhandcgl/article/details/51399222 

解题代码

#include<bits/stdc++.h>
using namespace std;
int Map[55][55];
int dp[55][55][55][55];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int m,n;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
            {
                scanf("%d",&Map[i][j]);
            }
        for(int i=1;i<n;i++)//第一个人的x遍历到倒数第二行
            for(int j=1;j<=m;j++)//第一个人的y遍历到最后一列
                for(int k=i+1;k<=n;k++)//第二个人从上一个人的下一行开始遍历x
                {
                    int l=i+j-k;//求第二个人的y
                    if(l<1)
                        continue;
                    dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+Map[i][j]+Map[k][l];
                }
        int s=max(max(dp[n-1][m][n-1][m],dp[n-1][m][n][m-1]),max(dp[n][m-1][n-1][m],dp[n][m-1][n][m-1]))+Map[n][m];//注意不要忘记加上最后一个宝藏
        cout<<s<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值