那些年我们一起犯二的青春--IGRSS--2015--1th

免责声明:本文仅代表个人观点,如有错误,请读者自己鉴别;如果本文不小心含有别人的原创内容,请联系我删除;本人心血制作,若转载请注明出处


SHARED FEATURE REPRESENTATIONS OF LIDAR AND OPTICAL IMAGES:

TRADING SPARSITY FOR SEMANTIC DISCRIMINATION
摘要
1、本文传递了超高分辨图像LiDAR(激光雷达)和光学图像的互补信息,实现这个目标通过无监督空间谱特征提取
2、在特征表示领域,我们通过CNN实现联合特征表示lifetime  sparsity(激活时间稀疏性)
      population sparsity(样本分布稀疏性)
3、我们分别导出单独和联合特征表示,分析稀疏性能和特性
4、结果证明RGB+LiDAR表示不再稀疏,推导出的偏置方程融合了边沿和高度产生了色彩边沿滤波器
5、联合特征表示如果使用聚类和拓扑数据可视化将更有判别性

引言
1、从直觉上和物理学上所有的场景目标在不同的语义类:色彩对应海拔,负的反射对应返回强度,但是是否有基础
     的论断对于统计领域(现在的机器学习都是基于统计学的机器学习)
2、RGB 和 LiDAR 是多维的,它们含有空间结构,揭示了独特的空间结构特征联系。
3、我们分析空间光谱特征表示,通过CNN,使用RGB,LiDAR和RGB+LiDAR共享表示,这些特征表示将会考虑到 稀疏性,紧凑性,拓扑可视化和区别能力。
4、RGB+LiDAR的结合导致了稠密和不紧凑表示,因此更有判别性:这些特征的正交性在非线性统计领域揭示了联合 的作用
5、超分辨(VHR)图像和多光谱图像给自动分析带来了巨大困难,因为高光谱和光谱过剩,和潜在的非线性特性
6、可以考虑用稀疏去做,学习图像的空间光谱特征确实有效,可以考虑用无监督学习
7、字典学习在稀疏学习中很重要,用来做图像分类和目标检测:有判别性的字典已经被提出用来图像分类,稀疏词 袋编码对于自动目标检测,空中图像的分类使用无监督稀疏特征
8、所有的方法描述输入图像以稀疏表示时,没有考虑CNN网络的非线性特征
9、本文介绍了通过CNNs实现无监督学习,学习RGB+LiDAR联合表示空间的统计特性
10、section 2:无监督,稀疏表示
        section 3:描述数据
        section 4:呈现和讨论主要发现
        section 5 :总结

通过CNN的无监督特征学习:
1、CNN,   1)卷积核,  2)非线性变换,  3)池化
      理论基础:1)卷积核提供一个简单的局部特征提取;  
                        2)非线性变换,允许对数据进行非线性表示
                        3)池化减少计算量,提供局部变换不变性
2、我们训练CNN去提取稀疏表示,OMP-k(正交投影)通过以无监督的方式训练网络得到稀疏特征表示
3、OMP-k迭代选取输出来训练滤波器,使重构误差最小,这个方法实现了结构系数,用SAE训练卷积核,减小了激 活时间稀疏性
4、本文使用EPLS算法,迭代建立稀疏输出和优化这个目标去学习每一层的滤波器,稀疏目标定义为:每个样本都有 一个热码,确保所有输出的平均激活度,使用这种方法,我们的到了一种表示方法,既考虑到了激活时间稀疏,也 考虑到了样本稀疏,CNN用EPLS训练计算高效,也可以得到稀疏表示,我们用这种方法分析了隐藏单元和共享表 示通过CNN从数据上学习,见图1.共享RGB+LiDAR表示由空间和光谱非线性结合(RGB+LiDAR特征)
     


数据收集:



实验结果:
在本节,我们研究了通过CNN训练得到的内容信息,通过EPLS算法来确保稀疏性,三个场景:RGB,LiDAR和RGB+LiDAR。做了下列分析:我们关注方法表示的紧凑性的激活时间稀疏性和样本分析稀疏性,我们可视化学习到的表示在拓扑空间,最后研究了当使用图像分割的时候,提取特征的判别性。
1、 实验步骤
      产生了大小为10*10的100,000张图片,其中30,000用来训练,在三种情况下,我们使用最多1000个隐藏单元来训练CNN,对于一些架构,我们尝试了几个对称感受野(大小分别为 3*3,5*5,7*7,10*10,),使用logistic非线性取EPLS的均值来训练网络和对比度归一化来训练网络,运用自然编码和极性分裂来导出稀疏特征。(什么鬼?)
2、 学习到的表示稀疏性
      在CNN在三种情况下训练完以后,我们研究了LS(激活时间稀疏性)和PS(样本分布稀疏性)。图3表示了得到的结果,可以看到,加上LiDAR和RGB,LS上升,RF(感受野)单独使用。LS低的时候,接近于目标的保持了相似的均值(所有输出)。学习的表示不再稀疏,揭示RGB和LiDAR带来正交信息(不稀疏的,肯定正交的特征多),而且它很难再得到紧凑的表示。相似性趋势从Nh(最大隐藏单元数)获得,对于较大的值,比如 >100,导致了较差的表示,相对的,当加上LiDAR和RGB时,无论RF和Nh多大,PS降低。样本结构系数性获得了一个较小的输出同时激活的集合。这些不会发生在RGB+LiDAR,因为这些特征传递了互补信息,因此大量的特征同时激活。
      
3、 学习到的表示的拓扑(表示不懂,拓扑结构,什么鬼!!!)
      图4表示了在RGB,LiDAR和RGB+LiDAR三种情况下,使用卷积网学习到的基。
      LS帮助系统学到一系列复杂的和丰富的基,从另一方面讲,学习到的LiDAR基是边沿识别器,与目标的高度变化 相关。结合了RGB+LiDAR,学习到的基继承了模型的共同特性,与海拔色彩探测器相似。
      

4、表示的判别性
      一个课选的方法是分析提取的特征和它们的互补信息用来聚类,我们跑了K-均值在前几个对于不同粒度我们提取 出的特征,图5(左)展现了当k=10的时候的分类效果,RGB在联合表示中占了很多簇,RGB+LiDAR展示了新的 语义簇的结合组,聚类解决方案的性能是一个较为争议的问题,许多县有的方法存在很多种评价体系。通用思想 是喜欢紧凑的和距离大的簇。图5右以K为变量,揭示了Davies-Bouldin and the Dunn’s validity indices,结果显 示了联合表示与RGB单独表示很相似。
        Davies-Bouldin指数,简称DBI。它的作用是评估K-means算法中k值的取值。
      Dunn’s validity indices 也是评估K均值算法中K值的取值
      

总结:
1、本文展现了高分辨LiDAR图像和光学图像的互补信息
2、我们分析了表达能力和使用当下的无监督方法从RGB,LiDAR,RGB+LiDAR提取的特征
3、使用CNN学习特征,并保持稀疏
4、算法的特点清楚显示了图像语义分割的有用性
5、在我们的实验,结合了RGB和LiDAR提升了特征表示性能,不再保持之前的稀疏特性,暗示RGB和LiDAR传递信 息的正交性和互补性
6、出了稀疏性,我们也对通过ISOMAP融合的拓扑空间保持兴趣(什么鬼?????)
7、RGB+LiDAR导致了更好的语义表示,在色彩和海拔结合以得到更好的目标表示
8、得到的结合特征表示揭示了一种语义分割
9、信息的正交性不仅来自缺少稀疏方案,也与辨别性有关系,通过语义分割研究,表达性能良好,语义图出现

后记:这篇文章有太多我之前没有接触过的东西,很多地方真心没看懂,注解仅供参考




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值