第一次跑高光谱数据结果

1、所用数据集 Bostwana、Indian Pines,所用算法 SVM

2、数据分析,高光谱数据维数高、信息量大、冗余信息多,这些先都不考虑,先输入SVM数据再考虑

3、试验流程 

①、加载数据,包括Data和label

②、数据预处理,归一化,我用的是最简单的 (x - min)/ max - min ,在每一维数据应用

③、选取训练样本,我用的是均衡选样,即每一类数据选取10%

④、训练SVM,我用的是c,g模式

⑤、分类,得到分类正确率,Kappa系数,分类结果图

4、实验结果

①、Bostwana

正确率:90.5172%

Kappa系数:0.8972

分类结果图:


Indian Pines

正确率:82.7788%

Kappa系数:0.8082

分类结果图:

5、分析

①、高光谱数据波段多,首先应该降维,可以用PCA等转换降维或者选择波段子集降维

②、高光谱数据是否需要降维,需要进一步研究

③、高光谱数据源数据值一般较大,但是变化性不大,如下所示,对于单维数据(单波段)肯定是归一化处理后更有利于分类,但是波段之间都有联系的,这种形式的归一化操作会破坏这种联系;如果对所有维(所有波段)数据进行归一化操作,在之前的经验中貌似效果并不好。。。如何找到一种更合理的归一化方式???


④、如何更有效地利用高光谱的物理特征

⑤、找到一个模型,可以兼顾物理特征和统计特征

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/chenyanqiao2010/article/details/52355015
个人分类: Hyperspectral Image
上一篇PCA
下一篇光谱空间特征提取用来高光谱图像分类:维度约减和深度学习方法
想对作者说点什么? 我来说一句

Indian Pines校准数据

2017年03月28日 22KB 下载

高光谱/遥感图像常用数据集(2)

2017年04月25日 54.61MB 下载

高光谱/遥感图像常用数据

2017年04月20日 43.43MB 下载

没有更多推荐了,返回首页

关闭
关闭