deeplearning
文章平均质量分 78
shareinfo2018
复杂问题简单化,力求精简强悍。
展开
-
GitHub 上 57 款最流行的开源深度学习项目【转】
from: https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。最后更新:2016.08.091.TensorFlowStars:29622使用数据流图计算可扩展机器学习问转载 2017-02-19 20:09:55 · 1767 阅读 · 0 评论 -
两个卷积神经的tensorboard图表对比
# encoding=utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data/', one_hot=True)def weight_variable(shape): ini原创 2017-08-04 08:53:24 · 1239 阅读 · 0 评论 -
tensorflow卷积网络测试
from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)learning_rate原创 2017-07-17 23:10:02 · 794 阅读 · 0 评论 -
Python中对象检测的非最大抑制
来自:http://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/康涅狄格州很冷。很冷。有时很难在早上睡觉。老实说,没有大量的南瓜香料拿铁和美丽的日出在清脆的秋叶上,我不认为我会离开我的舒适的床。但我有工作要做。今天的工作包括写一篇关于Felzen翻译 2017-08-11 11:04:47 · 2690 阅读 · 1 评论 -
tensorflow之cnn详细注解
from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)def weight_vari原创 2017-08-04 11:23:41 · 306 阅读 · 0 评论 -
TensorFlow之Keras, TensorLayer, Tflearn库比较【转】
来自:http://blog.csdn.net/dhsig552/article/details/52319541TensorFlow 是非常强大的分布式跨平台深度学习框架;因此,我们有必要比较一下基于 TensorFlow 开发的三个库 :Keras, TensorLayer, TflearnKeras:是这三个库中最早发布的,最开始只支持 Theano转载 2017-08-04 15:54:04 · 993 阅读 · 0 评论 -
Keras TFLearn TensorLayer实例【转】
来自:http://blog.csdn.net/chenhaifeng2016/article/details/72763439Keras MNIST CNN[python] view plain copy'''''Trains a simple convnet on the MNIST dataset. Gets to转载 2017-08-04 17:42:40 · 1147 阅读 · 0 评论 -
mxnet多层感知器、卷积神经网络测试【转】
来自:http://blog.csdn.net/xinfeng2005/article/details/53380700?locationNum=8&fps=1# coding=utf-8import mxnet as mximport matplotlib.pyplot as pltimport numpy as npimport structimport pickledef转载 2017-08-11 20:08:59 · 364 阅读 · 0 评论 -
mxnet多层感知机训练MNIST数据集详解【转】
来自:http://www.cnblogs.com/Mu001999/p/6221093.html#导入需要的模块import numpy as np #numpy只保存数值,用于数值运算,解决Python标准库中的list只能保存对象的指针的问题import os #本例子中没有使用到import gzip #使用zlib来压缩和解压缩数据文件,读写gzip文件import stru转载 2017-08-11 20:00:33 · 1912 阅读 · 0 评论 -
mxnet卷积神经网络训练MNIST数据集测试
import numpy as npimport mxnet as mximport logginglogging.getLogger().setLevel(logging.DEBUG)batch_size = 100mnist = mx.test_utils.get_mnist()train_iter = mx.io.NDArrayIter(mnist['train_data']原创 2017-08-12 14:07:59 · 1998 阅读 · 0 评论 -
catVSdog完整源码【转】
来自:https://github.com/kevin28520/My-TensorFlow-tutorials/tree/master/01%20cats%20vs%20dogs/new_versionimport tensorflow as tfimport numpy as npimport osimport mathdef get_files(file_dir, ratio)转载 2017-08-14 13:41:49 · 3811 阅读 · 1 评论 -
理解LSTM网络【转】
来自:http://blog.csdn.net/ycheng_sjtu/article/details/48792467周期神经网络(Recurrent Neural Networks)人类并非每一秒都在从头开始思考问题。当你阅读这篇文章时,你是基于之前的单词来理解每个单词。你并不会把所有内容都抛弃掉,然后从头开始理解。你的思考具有持久性。传统的神经网络并不能做到这转载 2017-08-21 15:49:09 · 639 阅读 · 0 评论 -
行人检测资源【转】
来自:http://blog.csdn.net/hermito/article/details/51153837行人检测资源(上)综述文献 http://www.cvrobot.net/pedestrian-detection-resource-1-summary-review-survey/行人检测资源(下)代码数据 http://www.cvrobot.net/pedest转载 2017-10-23 08:55:45 · 1204 阅读 · 0 评论 -
基于ARM在cpu上做神经网络加速【转】
来自:http://blog.csdn.net/deng497/article/details/69258081本文将尝试回答一个简单的问题:什么库/工具包/框架可以帮助我们优化训练模型的推理时间?本文只讨论已为ARM架构芯片提供C / C ++接口的工具包和库(由于嵌入式设备上使用 ,我们很少Lua 或 Python),限于文章篇幅,不阐述另外一种加速神经网络推理的方法,即修改网络架转载 2017-12-26 22:56:52 · 588 阅读 · 0 评论 -
TensorFlow 中文语音识别【转】
来自:https://blog.csdn.net/sinat_30665603/article/details/74897891http://blog.topspeedsnail.com/archives/10696数据集下载参见该文。其中下面的代码进行了一些小小的调整。其中包含缩进、版本方面(作者是python 3.5)、求wav_max_len方面(并行)、tf.nn.ctc_loss的参数顺...转载 2018-03-31 16:50:51 · 2421 阅读 · 0 评论 -
资源 | 数十种TensorFlow实现案例汇集:代码+笔记【转】
来自:http://www.cnblogs.com/zhizhan/p/5971423.html这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。项目地址:https://转载 2017-07-16 22:31:11 · 421 阅读 · 0 评论 -
tf之object detect摄像头物体识别测试
import numpy as npimport osimport six.moves.urllib as urllibimport sysimport tarfileimport tensorflow as tfimport zipfileimport cv2import time from collections import defaultdictfrom io im原创 2017-08-10 12:40:39 · 2780 阅读 · 0 评论 -
tf之object detect安装测试
Tensorflow Object Detection API depends on the following libraries:Protobuf 2.6Pillow 1.0lxmltf Slim (which is included in the "tensorflow/models" checkout)Jupyter notebookMatplotlibTens原创 2017-08-10 12:11:21 · 3276 阅读 · 3 评论 -
十个值得一试的开源深度学习框架【转】
from: https://www.oschina.net/news/68074/ten-worth-a-try-open-deep-learning-framework本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的转载 2017-02-19 20:14:34 · 743 阅读 · 0 评论 -
深度学习八大开源框架【转】
from: http://www.leiphone.com/news/201608/5kCJ4Vim3wMjpBPU.html导读:深度学习(Deep Learning)是机器学习中一种基于对数据进行表征学习的方法,深度学习的好处是用非监督式或半监督式的特征学习、分层特征提取高效算法来替代手工获取特征(feature)。作为当下最热门的话题,Google、Facebook、Microsof转载 2017-02-19 20:16:24 · 1058 阅读 · 0 评论 -
Deeplearning4j 实战(1):Deeplearning4j 手写体数字识别【转】
from:http://blog.csdn.net/wangongxi/article/details/54576594最近这几年,深度学习很火,包括自己在内的很多对机器学习还是一知半解的小白也开始用深度学习做些应用。由于小白的等级不高,算法自己写不出来,所以就用了开源库。Deep Learning的开源库有多,如果以语言来划分的话,就有Python系列的tensowflow,thea转载 2017-02-19 21:51:55 · 855 阅读 · 0 评论 -
Deeplearning4j 实战(2):Deeplearning4j 手写体数字识别Spark实现【转】
from:http://blog.csdn.net/wangongxi/article/details/54616842在前两天的博客中,我们用Deeplearning4j做了Mnist数据集的分类。算是第一个深度学习的应用。像Mnist数据集这样图片尺寸不大,而且是黑白的开源图片集在本地完成训练是可以的,毕竟我们用了Lenet这样相对简单的网络结构,而且本地的机器配置也有8G左右的内存。转载 2017-02-19 21:53:33 · 1255 阅读 · 1 评论 -
Deeplearning4j 实战(3):简介Nd4j中Java与CPP技术的应用【转】
from:http://blog.csdn.net/wangongxi/article/details/54970231Deeplearning4j中张量的计算是由一个叫Nd4j的库来完成的。它类似于Python中的numpy,对高维向量的计算有比较好的支持。并且,为了提高运算的性能,很多计算任务是通过调用C++来完成的。具体来说,底层C++运行张量计算可以选择的backend有:BLAS转载 2017-02-19 21:56:53 · 521 阅读 · 1 评论 -
Caffe使用教程【转】
from:https://github.com/shicai/Caffe_Manual初始化网络#include "caffe/caffe.hpp"#include #include using namespace caffe;char *proto = "H:\\Models\\Caffe\\deploy.prototxt"; /* 加载CaffeNet的配置 */P转载 2017-02-20 14:03:00 · 561 阅读 · 0 评论 -
Caffe 安装错误记录及解决办法【转】
from:http://blog.csdn.net/lien0906/article/details/468162431)Fatal error : 'tr1/tuple' file not found出现该问题有两种情况,可以先尝试下面的链接:https://github.com/BVLC/caffe/issues/1358 如果不行,那说明是 Makefile文件除了问转载 2017-02-20 14:14:59 · 2338 阅读 · 0 评论 -
深度神经网络(DNN)模型与前向传播算法【转】
来自:http://www.cnblogs.com/pinard/p/6418668.html深度神经网络(DNN)模型与前向传播算法 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。1. 从感知机到神经网络 在转载 2017-07-13 15:47:42 · 764 阅读 · 0 评论 -
tensorflow线性回归测试
import tensorflow as tfimport matplotlib.pyplot as plt #pip install matplotlibimport numpy as npm_w = 0.2m_b = 3trainData = []for i in range(100): tr_x = np.random.uniform(0.0, 1.0) t原创 2017-07-17 13:18:25 · 443 阅读 · 0 评论 -
tensorflow逻辑回归测试
from __future__ import print_functionimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载文件放到MNIST_da原创 2017-07-17 20:09:18 · 785 阅读 · 0 评论 -
tensorflow训练cnn网络识别验证码
生成数字验证码图片:from captcha.image import ImageCaptcha # pip install captcha import numpy as np import matplotlib.pyplot as plt from PIL import Image import random number = ['0','1','2','3','原创 2017-07-18 20:04:45 · 4707 阅读 · 22 评论 -
简易神经网络代码测试
import numpy as np #非线性sigmoid 函数 def sigmoid(x): return 1.0/(1.0+np.exp(-x))#sigmoid 函数的导数def dsigmoid(y): return y * (1 - y) X = np.array([[1,1,0], [1,0,1],原创 2017-07-22 23:14:18 · 969 阅读 · 0 评论 -
Tensorflow保存模型,恢复模型,使用训练好的模型进行预测和提取中间输出(特征)【转】
来自:http://blog.csdn.net/ying86615791/article/details/72731372前言:tensorflow中有operation和tensor,前者表示 操作 ,后者表示 容器 ,每个operation都是有一个tensor来存放值的,比如y=f(x), operation是f(x), tensor存放的就是y,如果要获取y,就必须输入xten转载 2017-08-09 12:25:25 · 8948 阅读 · 1 评论 -
linux下python3安装numpy与scipy
Python下 SciPy 和 numpy 这两个科学计算包的依赖关系较多,安装过程较为复杂。各个安装包:scipy-0.19.0 下载:https://github.com/scipy/scipynumpy-1.9.0 下载:https://sourceforge.net/projects/numpy/files/NumPy/1.9.0/numpy-1.9.0.zip/dow原创 2017-08-17 10:19:56 · 9986 阅读 · 1 评论 -
tf15: 中文语音识别【转】
来自:https://blog.csdn.net/u014365862/article/details/53869701使用的数据集THCHS30是Dong Wang, Xuewei Zhang, Zhiyong Zhang这几位大神发布的开放语音数据集,可用于开发中文语音识别系统。为了感谢这几位大神,我是跪在电脑前写的本帖代码。下载中文语音数据集(5G+):[python] view plain...转载 2018-03-31 16:57:06 · 897 阅读 · 0 评论