推荐算法
文章平均质量分 55
chenyueue
这个作者很懒,什么都没留下…
展开
-
DIN 网络
DIN原创 2021-03-27 00:44:26 · 768 阅读 · 0 评论 -
NFM 网络
NFMNFM 网络核心NFM 网络结构NFM 网络NFM 网络核心NFM 网络引入特征交互池结构,将特征交互后的信息并到一起,传入到DNN网络中。这样DNN 网络学习起来就容易多了NFM 网络结构NFM 网络结构如图,从图中可以看出模型输入的特征还是稀疏特征,然后经过一个embedding 层将稀疏特征,变为稠密特征,最宠输出特征是由输入特征和embedding vector 相乘得到。后面紧着这是Bi-interaction 成,也就是NFM的核心,其将所有向量进行对应元素两两交叉相乘,然后将所原创 2021-03-24 22:38:41 · 357 阅读 · 0 评论 -
DeeFM模型
deepFM 前言推荐系统模型提升的方向deepFMFM 网络结构和功能deep 网络结构和功能前言deep FM 可以认为是wide&deep 的升级版本,推荐系统模型提升的方向推荐系统的核心技术是CTR 预估,CTR预估是对每次广告的点击情况做出预测,预测用户是点击还是不点击。主要是使用和CTR相关的因素特征对用户是否点击做出预测。最有效的提升模型的表现是进行特征组合,因此如何有效的进行特征组合,但是用人工进行特征组合,随着特征阶数的升高,复杂度成几何倍数提升,且满足不了实时性的需求。因原创 2021-03-21 23:20:39 · 201 阅读 · 0 评论 -
wide deep模型
wide deep 模型对于推荐系统来说特征是大量稀疏的类别的特征,和图像不同推荐系统中重要的反而是稀疏的类别特征,数值特征反而没那么重要。稀疏特征意味着单个特征表达能力弱、特征组合爆炸、分布不均匀等。推荐系统还常常存在低频、长尾模式,需要具有好的泛化性,来发现这些。wide deep 模型的结构比较简单,他主要由wide部分的神经网络和deep部分的多层神经网络,输出层综合wide部分和deep部分的输出。其中wide部分主要处理比较稀疏的特征,deep层则输入不是稀疏的或者经过降维的特征,wid原创 2021-03-18 23:17:58 · 153 阅读 · 0 评论 -
Deep crossing
Deepcrossing前言一、embedding 层二、stacking 层三、Multiple Residual Units 层四、Scoring 层前言deep croosing 是第一个用于把深度学习用于推荐系统的网络。模型主要由 embedding层、stacking 层、Multiple Residual Units 层、Scoring 层组成。一、embedding 层该层主要是将高维稀疏的特征进行转化成低维稠密特征。二、stacking 层将embedding层的低维稠密特原创 2021-03-16 22:10:38 · 160 阅读 · 0 评论