NFM 网络

NFM 网络核心

NFM 网络引入特征交互池结构,将特征交互后的信息并到一起,传入到DNN网络中。这样DNN 网络学习起来就容易多了

NFM 网络结构

在这里插入图片描述

NFM 网络结构如图,从图中可以看出模型输入的特征还是稀疏特征,然后经过一个embedding 层将稀疏特征,变为稠密特征,最宠输出特征是由输入特征和embedding vector 相乘得到。
FM 特征交互如下:
y ^ F M ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n < v i , v j > x i x j \hat{y}_{FM}(x) = w_{0}+\sum_{i=1}^{n}w_{i}x_{i}+\sum_{i=1}^{n}<v_{i},v_{j}>x_{i}x_{j} y^FM(x)=w0+i=1nwixi+i=1n<vi,vj>xixj

而NFM 中交互项:
y ^ N F M ( x ) = w 0 + ∑ i = 1 n w i x i + ( ∑ i = 1 n ∑ j = i + 1 n ( x i v i ) ⊙ ( x j v j ) ) ) \hat{y}_{NFM}(x) = w_{0}+\sum_{i=1}^{n}w_{i}x_{i} + (\sum_{i=1}^{n}\sum_{j=i+1}^{n} (x_{i}v_{i}) \odot (x_{j}v_{j}) ) ) y^NFM(x)=w0+i=1nwixi+(i=1nj=i+1n(xivi)(xjvj)))
后面紧着这是Bi-interaction 成,也就是NFM的核心,其将所有向量进行对应元素两两交叉相乘,然后将所有向量对应元素求和,最终pooling 成一个向量。之后是隐藏层,隐藏层是全连接的神经网络。用于进行特征高层次非线性交互学习。最后是预测层。

NFM 网络

NFM (Neural Factorization Machines) 是一种结合了矩阵分解和深度学习技术的推荐系统模型。它在PyTorch库中实现复现通常涉及以下几个步骤: 1. **安装依赖**:首先需要安装PyTorch库以及相关的数据处理和科学计算库,如NumPy、Pandas。 ```python pip install torch torchvision numpy pandas ``` 2. **理解基础**:熟悉神经网络和因子分解的基本原理,理解NFM模型结构,包括用户和物品的嵌入层、交互层、以及可能的全连接层。 3. **模型构建**:在PyTorch中创建一个NFM类,包含输入、嵌入层、交互矩阵生成、以及预测等函数。例如,可以使用`nn.Embedding`模块进行嵌入,然后通过点积运算生成交互矩阵。 ```python class NFM(nn.Module): def __init__(self, num_users, num_items, emb_dim, hidden_units): super(NFM, self).__init__() self.user_embedding = nn.Embedding(num_users, emb_dim) self.item_embedding = nn.Embedding(num_items, emb_dim) self.interaction_layer = nn.Linear(emb_dim * 2, emb_dim) # 二阶项 self.fc_layers = nn.Sequential(*[nn.Linear(emb_dim, unit) for unit in hidden_units] + [nn.Linear(hidden_units[-1], 1)]) def forward(self, users, items): user_vecs = self.user_embedding(users) item_vecs = self.item_embedding(items) interaction = torch.cat((user_vecs * item_vecs, user_vecs + item_vecs), dim=-1) interaction = F.relu(self.interaction_layer(interaction)) fc_out = self.fc_layers(interaction) return fc_out ``` 4. **训练与优化**:准备数据,比如用户-物品评分对,使用PyTorch的损失函数(如均方误差MSE)和优化器(如Adam)来训练模型。 5. **评估与验证**:通过交叉验证或预留部分数据进行模型性能评估,如计算准确率、AUC等指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值