NFM 网络

NFM 网络核心

NFM 网络引入特征交互池结构,将特征交互后的信息并到一起,传入到DNN网络中。这样DNN 网络学习起来就容易多了

NFM 网络结构

在这里插入图片描述

NFM 网络结构如图,从图中可以看出模型输入的特征还是稀疏特征,然后经过一个embedding 层将稀疏特征,变为稠密特征,最宠输出特征是由输入特征和embedding vector 相乘得到。
FM 特征交互如下:
y ^ F M ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n < v i , v j > x i x j \hat{y}_{FM}(x) = w_{0}+\sum_{i=1}^{n}w_{i}x_{i}+\sum_{i=1}^{n}<v_{i},v_{j}>x_{i}x_{j} y^FM(x)=w0+i=1nwixi+i=1n<vi,vj>xixj

而NFM 中交互项:
y ^ N F M ( x ) = w 0 + ∑ i = 1 n w i x i + ( ∑ i = 1 n ∑ j = i + 1 n ( x i v i ) ⊙ ( x j v j ) ) ) \hat{y}_{NFM}(x) = w_{0}+\sum_{i=1}^{n}w_{i}x_{i} + (\sum_{i=1}^{n}\sum_{j=i+1}^{n} (x_{i}v_{i}) \odot (x_{j}v_{j}) ) ) y^NFM(x)=w0+i=1nwixi+(i=1nj=i+1n(xivi)(xjvj)))
后面紧着这是Bi-interaction 成,也就是NFM的核心,其将所有向量进行对应元素两两交叉相乘,然后将所有向量对应元素求和,最终pooling 成一个向量。之后是隐藏层,隐藏层是全连接的神经网络。用于进行特征高层次非线性交互学习。最后是预测层。

NFM 网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值