机器学习概述
机器学习是利用计算机基于数据统计规律构建概率统计模型并运用模型进行预测与分析的一门学学科,机器血包括监督学习、无监督学习、半监督学习、强化学习等[1]。
机器学习的一个最根本假设是:独立同分布假设。也就是样本之间相互独立,并且服从相同的统计分布规律。
统计学习的三要素为模型、策略、算法[1]。
一、有监督学习
监督学习简单来说就是给定数据特征并人为给数据进行打标签,然后给定损失函数,用特定的算法拟合由 x 到 y 的映射关系。监督学习假设 特征 x 和 标签 y 之间有 p(x,y) 这样的联合概率分布,并且训练集合验证集遵循相同的概率分布。有监督学习的过程就是拟合其条件概率分布 p(y|x) 即在 x 发生的情况下 y 发生的概率。常见的监督学习算法有线性回归、逻辑回归、决策树、随机森林、支持向量机、Adaboost、XGBoost、LGB、MLP、神经网络等。
1.1 回归
回归就是回到本来的情况,其 y 变量是一个连续的数值。回归常用的评估方法有 MSE、MAE、R 方、调整后的R方等。
1.2 分类
分类和回归的最大不同是 y 标签只有有限个类别,分类又可分为二分类和多分类,多分类可通过二分类来实现。分类常用的评估方法有准确率、召回率、精确度、f1 score、AUC 等,常画出其ROC 曲线以及混淆矩阵来评判模型的好坏。
二、无监督学习
无监督学习又称为聚类、其本质是通过度量样本点之间的距离来判断样本点之间的团簇情况。常用的聚类算法有 K-mean、层次聚类、DBSCAN 等方法各有各的优缺点。
cite [1]: 《统计学习方法》-李航