小波图像融合综述(1)

本文介绍了图像融合的三个层次,并重点探讨像素级融合,尤其是基于小波变换的融合方法。小波变换因其多尺度、多分辨率分解特性,在图像处理中表现出优势,包括重构能力、图像结构和细节提取等。融合步骤包括对原始图像进行小波分解、各层融合处理及重构。小波基选择和分解层数对融合效果有显著影响,可通过融合效果评价进行优化。
摘要由CSDN通过智能技术生成

       图像融合是将两幅或多幅图像融合在一起,以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。融合算法应该充分利用各原图像的互补信息,使融合后的图像更适合人的视觉感受,适合进一步分析的需要;并且应该统一编码,压缩数据量,以便于传输。
图像融合可分为三个层次:
       1.    像素级融合
       2.    特征级融合
       3.    决策级融合
       其中像素级融合是最低层次的融合,也是后两级的基础。它是将各原图像中对应的像素进行融合处理,保留了尽可能多的图像信息, 精度比较高, 因而倍受人们的重视。像素级的图像融合方法大致可分为三大类:
       1.    简单的图像融合方法
       2.    基于塔形分解(如Laplace塔形分解、比率塔等)的图像融合方法
       3.    基于小波变换的图像融合方法
       小波变换是图像的多尺度、多分辨率分解,它可以聚焦到图像的任意细节,被称为数学上的显微镜。近年来,随着小波理论及其应用的发展,已将小波多分辨率分解用于像素级图像融合。小波变换的固有特性使其在图像处理中有如下优点:
       1.    完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;
       2.    把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;
       3.    具有快速算法,它在小波变换中的作用相当于FFT算法在傅立叶变换中的作用,为小波变换应用提供了必要的手段;
       4.    二维小波分析提供了与人类视觉系统方向相吻合的选择性图像。

——像素级

图 像 融 合 是一 种 重要的 增 强 图 像信 息的 技术方 法 , 如 何 对 同 一 目 标 的多 源 遥 感 图 像 数 据 进 行有效 的融 合 , 最 大 限 度 地利 用 多 源 遥 感 数据 中 的 有 用 信 息 , 提 高 系 统的 正 确 识 别 、 判 断 和 决 策 能力 , 这是 遥感 数 据融 合研 究 的重要 内容之 一 。 图 像 融 合 技 术 的 发 展 经 历了 3 个阶段 : ( l ) 简单 的 图 像 融 合方 法 , 如 R G B 假彩色 合 成 、 I H S 彩 色 变 换 、 P CA 主 分 量 变换 法 等 ; ( 2 ) 随 着 塔 式算 子的提 出 , 在融 合领域 也出现 了 一 些较为复杂 的 模 型 ; ( 3 ) 用 小波 变换 的多 尺 度分 析 替代塔 式 算 法 。 传 统的图 像 数 据 融 合 方法对 中 、 高 分辨率 的遥 感 图 像 的 数据 融 合 一 般 都 能 取 得 比 较理 想的 效 果 , 但 对 于 低 分 辨率 的 遥 感 图 像 数 据 融 合 效 果 并 不 明 显 。 具 有 “ 数学 显 微 镜 ” 之称 的 小波变换 同时 在 时 域 和 频 域 具有分 辨率 , 对 高 频 分 量 采 用 逐 渐 精 细的 时域或 空 域 步 长 , 可 以 聚 焦 到 分析 对 象 的 任 意细节 , 对 于 剧 烈 变化 的 边 缘 , 比 常 规 的 傅 里 叶 变换 具有更 好 的适 应性 。 由 于 小波变换具有 的 特 点 , 使 它 很快在 图 像 处理 中 得 到 广 泛的应 用 。 与 传 统的 数据 融 合方 法相 比 , 小波融 合 方 法 不 仅 能 够 针 对 输 人图 像 的 不 同 特 征 来 合 理选择小波 基 以 及小 波 变 换 的次 数 , 而 且在融 合 操 作 时 又 可 以 根 据 实 际 需 要 来引 人 双方的细节 信 息 。 从 而 表 现 出 更 强 的针对 性 和 实 用 性 , 融 合效 果更 好 。 另 外 , 从实施 过程 的 灵 活性 方 面 评 价 , IH S 彩色变换 只 能 而且 必须 同 时对 三 个波 段 进行融 合 操 作 , P C A 主 分 量变换 法 的 输 人 图 像 必 须有 三 个或 三 个 以 上 , 而 小 波方 法则 能够完成 对 单 一 波 段 或多 个波 段 的 融 合 运 算 , 对 于 单 个 黑 白 图 像 的 融 合 , 小波 方 法 更 是唯一的选 择 。 本 文 提出 了 一种基 于 小波变 换 的 融 合方 法 , 使 得融 合 图 像 在最 大 限 度 保 留 多波段光 谱 信 息 的 同时 , 提 高 了 清 晰 度 和空 间 分 辨 率 。 并 在 M A T L A B 环 境 下 对 该方 法 进行 了 实 例 分 析 , 从 图 像 清 晰度 、 信 息墒 、 信 噪 比 等 几 个 方 面 对结 果 做 了 深 人的 分 析 与 对 比 , 发现 融 合 后的 图 像 均 值 和 方 差 基 本 保持 不 变 , 图 像 信 噪 比 为 ZO db 左右 , 说 明 融 合 后 的 图 像 基 本保持 了 原 始 图 像 的光 谱 特 性 , 而 信 息 嫡 和 清 晰度 有 明 显 的 提高 。 因 此基 于 小 波 变换 的 M a l l a t 多分辨 率 分 析 可 有 效 地 用 于 低分 辨 率多光 谱 遥 感 图 像 的 数 据 融 合 , 融 合 后 的图 像 在 信 息 含量 、
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值