图像融合是将两幅或多幅图像融合在一起,以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。融合算法应该充分利用各原图像的互补信息,使融合后的图像更适合人的视觉感受,适合进一步分析的需要;并且应该统一编码,压缩数据量,以便于传输。
图像融合可分为三个层次:
1. 像素级融合
2. 特征级融合
3. 决策级融合
其中像素级融合是最低层次的融合,也是后两级的基础。它是将各原图像中对应的像素进行融合处理,保留了尽可能多的图像信息, 精度比较高, 因而倍受人们的重视。像素级的图像融合方法大致可分为三大类:
1. 简单的图像融合方法
2. 基于塔形分解(如Laplace塔形分解、比率塔等)的图像融合方法
3. 基于小波变换的图像融合方法
小波变换是图像的多尺度、多分辨率分解,它可以聚焦到图像的任意细节,被称为数学上的显微镜。近年来,随着小波理论及其应用的发展,已将小波多分辨率分解用于像素级图像融合。小波变换的固有特性使其在图像处理中有如下优点:
1. 完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;
2. 把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;
3. 具有快速算法,它在小波变换中的作用相当于FFT算法在傅立叶变换中的作用,为小波变换应用提供了必要的手段;
4. 二维小波分析提供了与人类视觉系统方向相吻合的选择性图像。
——像素级
小波图像融合综述(1)
最新推荐文章于 2024-09-22 19:35:02 发布
本文介绍了图像融合的三个层次,并重点探讨像素级融合,尤其是基于小波变换的融合方法。小波变换因其多尺度、多分辨率分解特性,在图像处理中表现出优势,包括重构能力、图像结构和细节提取等。融合步骤包括对原始图像进行小波分解、各层融合处理及重构。小波基选择和分解层数对融合效果有显著影响,可通过融合效果评价进行优化。
摘要由CSDN通过智能技术生成