UP DOWN COUNTER WITH LOAD

本文介绍了一个使用Verilog编写的可加载初值并具有上计数和下计数功能的模块`up_down_counter`。该模块接受加载使能、初始值、时钟、复位、计数器使能以及上/下计数控制信号,并输出计数结果。在时钟的上升沿或复位信号为低时,计数器将根据加载使能或计数器使能以及上/下控制信号更新计数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


`timescale 1ns / 1ps
//
// Company: SEU.IC
// Engineer: RAY
//
// Create Date:    18:47:13 03/31/2011
// Design Name: up_down_counter
// Module Name:    up_down_counter
// Project Name: Counters
//
module up_down_counter(
     Load_in, //Load计数初值使能
     Data_in, //初值
     Clock,
     Reset,
     CounterON_in,  //计数器使能
     UpDown_in,  //up/down 控制
     CountResult_out //计数结果
     );
    
    input Load_in;
    input [3:0] Data_in;
    input Clock;
    input Reset;
    input CounterON_in;
    input UpDown_in;
    output [3:0] CountResult_out;

    reg [3:0] CountResult_out;;
    
     always @(posedge Clo

### Ollama Prompt 使用方法 Ollama 是种允许在个人设备上运行大型语言模型的技术,这使得开发者能够更方便地测试和部署各种应用。对于Prompt设计,其核心在于构建有效的输入字符串,以便让LLM理解并给出预期的回答。 为了有效使用Ollama Prompts,在设计提示语时应考虑以下几个方面: - **清晰度**:确保指令简洁明了。 - **上下文提供**:如果适用,给予足够的背景信息帮助模型更好地理解和回应请求。 - **具体化目标**:明确指出希望获得什么样的输出形式或内容范围[^1]。 #### 示例代码展示如何调用带有特定参数配置的OLLAMA API接口发送自定义prompt: ```python import requests def send_ollama_prompt(prompt_text, api_key="your_api_key"): url = "https://api.ollama.com/v1/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = {"prompt": prompt_text} response = requests.post(url, json=data, headers=headers) return response.json() # 测试函数 if __name__ == "__main__": result = send_ollama_prompt("解释什么是量子计算?") print(result['choices'][0]['text']) ``` --- ### LangChain 整合教程 LangChain 提供了套完整的工具集来加速基于大语言模型的应用程序开发过程。通过引入链的概念,可以轻松组合多个处理单元形成复杂的工作流,从而简化应用程序逻辑的设计与实现。 要将 LangChain 集成到现有项目中,通常涉及以下几部分工作: - 安装必要的库文件并通过Poetry管理依赖关系。 - 构建适合应用场景的数据管道。 - 利用预置模块快速搭建基础架构。 - 自定义业务逻辑以满足特殊需求[^2]。 下面是个简单的例子,展示了怎样利用LangChain创建个基本的任务执行器,并将其应用于自然语言查询解析场景下: ```python from langchain import ConversationChain from langchain.prompts.prompt import PromptTemplate from langchain.chains.conversation.memory import ConversationBufferMemory template = """The following is a friendly conversation between a human and an AI. Human: {input} AI:""" prompt = PromptTemplate(input_variables=["input"], template=template) conversation_chain = ConversationChain( llm=None, # 替换为实际使用的LLM实例 memory=ConversationBufferMemory(), verbose=True, prompt=prompt ) response = conversation_chain.predict(input="你好,世界!") print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值