# [USACO3.4] 美国血统 American Heritage
## 题目描述
农夫约翰非常认真地对待他的奶牛们的血统。然而他不是一个真正优秀的记帐员。他把他的奶牛 们的家谱作成二叉树,并且把二叉树以更线性的“树的中序遍历”和“树的前序遍历”的符号加以记录而 不是用图形的方法。
你的任务是在被给予奶牛家谱的“树中序遍历”和“树前序遍历”的符号后,创建奶牛家谱的“树的 后序遍历”的符号。每一头奶牛的姓名被译为一个唯一的字母。(你可能已经知道你可以在知道树的两 种遍历以后可以经常地重建这棵树。)显然,这里的树不会有多于 26 个的顶点。 这是在样例输入和 样例输出中的树的图形表达方式:
```
C
/ \
/ \
B G
/ \ /
A D H
/ \
E F
```
树的中序遍历是按照左子树,根,右子树的顺序访问节点。
树的前序遍历是按照根,左子树,右子树的顺序访问节点。
树的后序遍历是按照左子树,右子树,根的顺序访问节点。
## 输入格式
第一行: 树的中序遍历
第二行: 同样的树的前序遍历
## 输出格式
单独的一行表示该树的后序遍历。
## 样例 #1
### 样例输入 #1
```
ABEDFCHG
CBADEFGH
```
### 样例输出 #1
```
AEFDBHGC
```
## 提示
题目翻译来自NOCOW。
USACO Training Section 3.4
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<iostream>
using namespace std;
void Behind(string Mid, string Frount)
{
if (Mid.size() <= 1)
{
cout << Mid;
return;
}
char root = Frount[0];
//cout << root;
//p[i] = root;
int k = Mid.find(root);
string midLeft, midRight;
string FrountLeft, FrountRight;
midLeft = Mid.substr(0, k);
midRight = Mid.substr(k + 1);
FrountLeft = Frount.substr(1, k);
FrountRight = Frount.substr(k+1, Frount.size() - k);
Behind(midLeft, FrountLeft);
Behind(midRight, FrountRight);
cout << root;
}
int main()
{
string Mid;
string Frount;
cin >> Mid;
cin >> Frount;
Behind(Mid, Frount);
}