线性代数-中英文对照

原文链接 https://blog.csdn.net/touzani/article/details/1618597 

向量代数 
向量——有方向和大小的量
(向量(vector)),法向量(normal vector)(向量的长度(模)),(零向量(zero vector)),(负向量),(向量的加法(addition)),(三角形法则),(平行四边形法则),(多边形法则),(减法),(向量的标量乘积(scalar multiplication)),(向量的线性运算),线性组合(linear combination),线性表示,线性相关(linearly dependent),线性无关(linearly independent),(原点(origin)),(位置向量(position vector)),(线性流形(linear manifold)),(线性子空间(linear subspace));基(basis),仿射坐标(affine coordinates),仿射标架(affine frame),仿射坐标系(affine coordinate system),(坐标轴(coordinate axis)),(坐标平面),(卦限(octant)),(右手系),(左手系),(定比分点);(线性方程组(system of linear equations)),(齐次线性方程组(system of homogeneous linear equations)),(行列式(determinant)); 维向量,向量的分量(component),向量的相等,和向量,零向量,负向量,标量乘积, 维向量空间(vector space),自然基,(行向量(row vector)),(列向量(column vector));单位向量(unit vector),直角坐标系(rectangular coordinate system),直角坐标(rectangular coordinates),射影(projection),向量在某方向上的分量,(正交分解),(向量的夹角),内积(inner product),标量积(scalar product),(数量积),(方向的方向角),(方向的方向余弦);外积(exterior product),向量积(cross product),(二重外积);混合积(mixed product,scalar triple product) 


行列式

(映射(mapping)),(象(image)),(一个原象(preimage)),(定义域(domain)),(值域(range)),(变换(transformation)),(单射(injection)),(象集),(满射(surjection)),(一一映射,双射(bijection)),(原象),(映射的复合,映射的乘积),(恒同映射,恒同变换(identity mapping)),(逆映射(inverse mapping));(置换(permutation)),( 阶对称群(symmetric group)),(对换(transposition)),(逆序对),(逆序数),(置换的符号(sign)),(偶置换(even permutation)),(奇置换(odd permutation));行列式(determinant),矩阵(matrix),矩阵的元(entry),(方阵(square matrix)),(零矩阵(zero matrix)),(对角元),(上三角形矩阵(upper triangular matrix)),(下三角形矩阵(lower triangular matrix)),(对角矩阵(diagonal matrix)),(单位矩阵(identity matrix)),转置矩阵(transpose matrix),初等行变换(elementary row transformation),初等列变换(elementary column transformation);(反称矩阵(skew-symmetric matrix));子矩阵(submatrix),子式(minor),余子式(cofactor),代数余子式(algebraic cofactor),(范德蒙德行列式(Vandermonde determinant));(未知量),(方程的系数(coefficient)),(常数项(constant)),(线性方程组的解(solution)),(系数矩阵),(增广矩阵(augmented matrix)),(零解);子式的余子式,子式的代数余子式


线性方程组与线性子空间 


(阶梯形方程组),(方程组的初等变换),行阶梯矩阵(row echelon matrix),主元,简化行阶梯矩阵(reduced row echelon matrix),(高斯消元法(Gauss elimination)),(解向量),(同解),(自反性(reflexivity)),(对称性(symmetry)),(传递性(transitivity)),(等价关系(equivalence));(主变量),(自由位置量),(一般解),(齐次线性方程组的秩(rank));向量组线性相关,向量组线性无关,线性组合,线性表示,线性组合的系数,(向量组的延伸组);线性子空间,由向量组张成的线性子空间;基,坐标,(自然基),线性子空间的维数(dimension),向量组的秩;(解空间),齐次线性方程组的基础解系(fundamental system of solutions);(导出组),线性流形,(方向子空间),(线性流形的维数),(方程组的特解);(方程组的零点),(方程组的图象),(平面的一般方程),(平面的三点式方程),(平面的截距式方程),(平面的参数方程),(参数),(方向向量);(直线的方向向量),(直线的参数方程),(直线的标准方程),(直线的方向系数),(直线的两点式方程),(直线的一般方程);(平面束(pencil of planes))


矩阵的秩与矩阵的运算

线性表示,线性等价,极大线性无关组;(行空间,列空间),行秩(row rank),列秩(column rank),秩,满秩矩阵,行满秩矩阵,列满秩矩阵;线性映射(linear mapping),线性变换(linear transformation),线性函数(linear function);(零映射),(负映射),(矩阵的和),(负矩阵),(线性映射的标量乘积),(矩阵的标量乘积),(矩阵的乘积),(零因子),(标量矩阵(scalar matrix)),(矩阵的多项式);(退化的(degenerate)方阵),(非退化的(non-degenerate)方阵),(退化的线性变换),(非退化的线性变换),(逆矩阵(inverse matrix)),(可逆的(invertible),(伴随矩阵(adjoint matrix));(分块矩阵(block matrix)),(分块对角矩阵(block diagonal matrix));初等矩阵(elementary matrix),等价(equivalent);(象空间),(核空间(kernel)),(线性映射的秩),(零化度(nullity))  

《从初等数学到高等数学》

转载于:https://my.oschina.net/u/523053/blog/1834979

本书强调抽象的向量空间和线性映射,内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等,本书在内容编排和处理方法上与国内通行的做法大不相同,它完全抛开行列式,采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论。书中对一些术语、结论、数学家、证明思想和启示等做了注释,不仅增加了趣味性,还加强了读者对一些概念和思想方法的理解。   本书起点低,无需线性代数方面的预备知识即可学习,非常适合作为教材,另外、本书方法新颖,非常值得相关教师和科研人员参考。 描述线性算子的结构是线性代数的中心任务之一,传统的方法多以行列式为工具,但是行列式既难懂又不直观,其定义的引入也往往缺乏动因。本书作者独辟蹊径,抛弃了这种曲折的思路,把重点放在抽象的向量空间和线性映射上,给出的证明不使用行列式,更显得简单而直观。本书把行列式的内容放在了最后讲解,开辟了一条理解线性算子结构的新途径。书中还对一些术语、结论、证明思路、提及的数学家做了注释,增加了行文的趣味性,便于读者掌握核心概念和思想方法。   本书起点较低,不需要太多预备知识,而且特色鲜明,是公认的阐述线性代数的经典佳作。原书自出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加大学伯克利分校等著名学府。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值