1) 矩阵
1. 矩阵和方阵的概念 (方阵A=(aij)mxn => m=n)
A=(aij)mxn 表示矩阵里面的元素aij(例如:a32表示第3行-第2列)滴, m行、n列。
如果行列m=n相等的时候,称为n阶方阵。
2. 几种特殊矩阵
零矩阵: 矩阵的所有元素都为0
单位矩阵: 方阵(m=n)-> 主对角线上的元素都是1,其他的元素都是0
行(列)矩阵: 矩阵只有1行或者1列
上(下)三角矩阵:方阵(m=n)->
上三角矩阵: 主对脚线以下的全是0
下三角矩阵: 主对脚线以上的全是0
对角矩阵:方阵(m=n)-> 主对角线 以外 的元素都是0
3. 矩阵的初等行交换
4. 阶梯形矩阵
案例:
5. 增广矩阵
增广矩阵就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。 如:方程AX=b 系数矩阵为A,它的增广矩阵为(A b)。
6. 思考题1
7. 思考题2
8. 齐次线性
线性方程组的常数项都为0
9. 矩阵等价
如果存在可逆阵P、Q,使P*A*Q=B,则称A与B等价。