1) 矩阵的介绍

本文详细介绍了矩阵的基本概念,包括矩阵、方阵、零矩阵、单位矩阵、行(列)矩阵、上(下)三角矩阵和对角矩阵的定义。同时,文章还讲解了矩阵的初等行交换、阶梯形矩阵、增广矩阵的概念,以及齐次线性方程组和矩阵等价的定义。
摘要由CSDN通过智能技术生成
1) 矩阵
1. 矩阵和方阵的概念 (方阵A=(aij)mxn => m=n)

A=(aij)mxn 表示矩阵里面的元素aij(例如:a32表示第3行-第2列)滴, m行、n列。

如果行列m=n相等的时候,称为n阶方阵。

image

2. 几种特殊矩阵

零矩阵: 矩阵的所有元素都为0

单位矩阵: 方阵(m=n)-> 主对角线上的元素都是1,其他的元素都是0

行(列)矩阵: 矩阵只有1行或者1列

上(下)三角矩阵:方阵(m=n)->

上三角矩阵: 主对脚线以下的全是0

下三角矩阵: 主对脚线以上的全是0

对角矩阵:方阵(m=n)-> 主对角线 以外 的元素都是0

image

3. 矩阵的初等行交换

image

4. 阶梯形矩阵

image

案例:

image

image

5. 增广矩阵

增广矩阵就是在系数矩阵的右边添上一列,这一列是线性方程组的等号右边的值。 如:方程AX=b 系数矩阵为A,它的增广矩阵为(A b)。

image

6. 思考题1

image

image

7. 思考题2

image

8. 齐次线性

线性方程组的常数项都为0

image

9. 矩阵等价

如果存在可逆阵P、Q,使P*A*Q=B,则称A与B等价。

image

转载于:https://my.oschina.net/dataRunner/blog/404707

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值