地球围绕着太阳的概念和计算

我受够了含混不清和一知半解,一次找全供大家参考。
出处https://www.pveducation.org/zh-hans/pvcdrom/acknowledgements
1、本地太阳时Local Solar Time LST and Local Time LT
太阳高度角最大时为太阳时的中午十二点。
本地时由世界时和本地时区确定,比如北京时就是 UT+8,UT是Universal Time
2、本地标准时子午线
每360/24=15°,就相差一小时,例如北京时,本地标准子午线在158=120E,东经120°
3、均时差 Equation of Time EoT
EoT=9.87
sin(2B)-7.53cosB-1.5sinB
式中 B=360
(N-81)/365
N的意思为一年中的第几天,比如1月1号,N=1,2月1号,N=32
在这里插入图片描述

4、时间修正系数 TC Time Correction Factor

TC=4*(Longitude-LSTM)+EoT
此处因为每1°相差4分钟,所以TC单位是分钟
5、本地太阳时 LST
LST=LT+TC/60
此处TC除以60,转化为时
比如西安市经度为108.94,2022年3月24日(第83天)的北京时间中午12点,对于本地太阳时相当于
B=360*(83-81)/365 带入EoT,EoT=-6.898单位是分钟

LST=12+(4*(108.94-120)+(-6.898))/60=11.1477即 11点8.862分 差的还挺多的。
6、时角 Hour Angle(HRA)
当太阳时正午时,时角为0°,上午为负,下午为负
HRA=15*(LST-12)
7、赤纬角 Declination Angle
太阳赤纬角是由于地球自转轴倾斜以及地球围绕太阳公转而产生的季节性变化。用δ表示。
赤纬角的计算公式
δ=-23.45cos((360/365)(d+10))
d是一年当中的第几天,相当于前面的N。别忘了前面的负号
也可以用其他的公式代替
在这里插入图片描述
8、太阳高度角Elevation Angle/altitude angle
由于地球赤纬角的存在,一年中某特定时间里太阳的最大高度角(α)是纬度φ和赤纬角δ的函数
α=90+φ-δ
一天中太阳高度角的变化由以下公式获得
在这里插入图片描述
9、天顶角 Zenith Angle
ζ=90°-α

在这里插入图片描述
10、日出sunrise和日落sunset
在这里插入图片描述
图片里公式COS-1的意思是arccos,一般结算结果为弧度,记得转换成角度。
还是上面那个例子,西安市经度为108.94,纬度为34.26,2022年3月24日(第83天)日出时间和日落时间
3月24日赤纬角为
δ=-23.45cos((360/365)(83+10))=0.70632
TC/60=(4*(108.94-120)+(-6.898))/60=-0.62237
Sunrise=12-arccos(-tgφtgδ)/15-TC/60=6.82相当于北京时间6点49分日出。
sunset=12+arccos(-tgφtgδ)/15-TC/60=18.88438 相当于北京时间18点53分日落
11、方位角 Azimuth Angle
方位角是入射阳光的罗盘方向,在正午时刻,太阳在北半球总是位于正南,在南半球总是位于正北,以与正北方向的夹角为太阳方位角,在春分秋分,太阳日出时方位角为90°,日落时为270°
在这里插入图片描述
在这里插入图片描述
还是上面那个例子,西安市经度为108.94,纬度为34.26,2022年3月24日(第83天)上午11点和下午4点,太阳方位角分别是
太阳赤纬角δ=-23.45cos((360/365)(83+10))=0.70632°
φ=纬度=34.26°
HRA=15*(LST-12)
当地太阳时LST=11+(4*(108.94-120)+(-6.898))/60=11-0.8523=10.1477
时角HRA=15*(10.1477-12)=-27.7845°
天顶角α=arcsin(sinδsinφ+cosδcosφcosHRA)=0.83023=47.5687°
方位角Azi=arccos((sinδcosφ-cosδsinφcosHRA)/cosα)=2.378945=136.3035
下午4点的我不算了,太复杂了。

### 关于 CTF 攻防世界 MISC 题目作为桌面应用的适用性分析 #### 杂项题目的特点及其适配场景 MISC 类型题目通常涉及多种技能,包括但不限于逆向工程、数据分析、密码学基础以及文件处理等[^1]。这类题目设计的目的在于考察参赛者综合运用技术的能力,因此其形式多样且灵活多变。 在攻防世界中,MISC 题目被广泛认为具有较高的教育价值和实践意义。特别是对于初学者而言,这些题目能够提供一种低门槛的学习路径[^2]。然而,在评估它们是否适合作为桌面应用程序的一部分时,则需考虑以下几个方面: - **交互复杂度**:某些 MISC 题目可能需要复杂的用户输入或者特定环境配置才能完成解答过程。如果目标是开发一款面向大众用户的桌面程序,那么过于繁琐的操作流程可能会降低用户体验满意度。 - **资源消耗情况**:一些高级别的 MISC 挑战往往涉及到大容量数据集或是高性能计算需求的任务(例如解压缩大量文件或执行密集型算法)。这可能导致最终产品运行效率低下甚至无法正常工作于普通硬件设备上[^3]。 - **安全性考量**:将真实比赛中的挑战直接移植到实际软件项目里存在潜在风险——尤其是当这些问题包含已知漏洞利用样本或其他敏感信息的时候。开发者应当谨慎筛选并修改原始素材以确保不会泄露任何危险代码片段给未经授权的人士访问。 综上所述,虽然 MISC 类型题目确实可以成为构建有趣而富有启发性的桌面应用场景的良好起点之一;但在具体实施过程中仍需仔细权衡各种因素之间的关系,并做出适当调整来满足预期用途的要求。 ```python # 示例 Python 脚本用于演示如何解析十六进制字符串转换成二进制文件 hex_data = "48656c6c6f20576f726c64" # 这是一个简单的 Hello World 的 ASCII 编码表示法 binary_file_path = "./output.bin" with open(binary_file_path, 'wb') as f: bytes_object = bytearray.fromhex(hex_data) f.write(bytes_object) print(f"成功创建了一个名为 {binary_file_path} 的二进制文件") ``` 上述脚本展示了如何通过编程手段实现从十六进制编码还原至原始字节流的功能,这是许多 MISC 解题环节常见的操作步骤之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值