遗憾

年轻人花在朋友圈和QQ空间上的时间能分一小部分给读书学习,那中国的青年一代就前进一大步。

转载于:https://my.oschina.net/wfire/blog/532488

以下是库恩扑克游戏的最小遗憾算法的示例代码,并打印遗憾矩阵: ``` import random # 定义牌面和花色 ranks = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A"] suits = ["H", "D", "C", "S"] # 构造一副牌 deck = [(rank + suit) for rank in ranks for suit in suits] # 定义最小遗憾算法函数 def min_regret_algorithm(regret_matrix): # 计算平均遗憾分数 avg_regrets = [sum(regret_matrix[i])/len(regret_matrix[i]) for i in range(len(regret_matrix))] # 找到最小平均遗憾分数的策略 min_regret_action = avg_regrets.index(min(avg_regrets)) return min_regret_action # 初始化遗憾矩阵 regret_matrix = [[0 for j in range(3)] for i in range(len(deck))] # 定义循环 while True: # 打乱牌堆 random.shuffle(deck) # 让用户选择手牌 user_card = input("请选择手牌:") # 从牌堆中移除用户选择的手牌 deck.remove(user_card) # 计算AI选择手牌的概率分布 action_probs = [sum(regret_matrix[i]) for i in range(len(deck))] total_action_probs = sum(action_probs) action_probs = [action_probs[i]/total_action_probs for i in range(len(action_probs))] # 使用概率分布选择AI的手牌 ai_card = random.choices(deck, weights=action_probs)[0] # 输出结果 print("你的手牌:", user_card) print("AI的手牌:", ai_card) if user_card == ai_card: print("平局!") elif (ranks.index(user_card[:-1]) + 1) % 13 == ranks.index(ai_card[:-1]): print("你赢了!") # 更新遗憾矩阵 regret_matrix[deck.index(user_card)][0] += 1 regret_matrix[deck.index(ai_card)][1] -= 1 else: print("你输了!") # 更新遗憾矩阵 regret_matrix[deck.index(user_card)][1] -= 1 regret_matrix[deck.index(ai_card)][0] += 1 # 打印遗憾矩阵 print("遗憾矩阵:") for i in range(len(deck)): print(deck[i], regret_matrix[i]) ``` 在这个代码中,我们使用了最小遗憾算法来选择AI的手牌。遗憾矩阵是一个Nx3的矩阵,其中N是剩余牌堆的大小,每一行表示一张牌的遗憾值。对于每一轮游戏,我们根据当前的遗憾矩阵计算出AI应该选择哪张牌,然后和用户选择的牌进行比较,更新遗憾矩阵。通过不断地更新遗憾矩阵,AI会逐渐学会选择最优的手牌,从而获得更高的胜率。在每一轮游戏结束后,我们会打印出遗憾矩阵,以便观察AI的学习情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值