Reinforcement Learning - Charles Isbell from Georgia Tech

你可以从这里 Udacity上的课程 听课,是比较简单易懂的教程,比起单纯看Sutton的书还更有意思更加无痛入门一点
(Sutton的书写的是很详细不过真的看的很累,可以结合着看吧)

Markov Decision Processes

  1. Markov property means only the present matters.
  2. The rules are stationary.
FeatureAppearanceNotion
STATESa set of states
MODELT(s, a, s’)~Pr(s’ | s,a)rules, a probability from s execute a to s’
ACTIONA(s), Aaction in the state or a set of actions
REWARDR(s), R(s, a), R(s, a, s’)a scale value you get for being into a state / being into a state and taking an action / being into a state and taking an action and end up in another state

Solution to MDP

FeatureAppearanceNotion
POLICYπ(s)~aa function takes in a state and returns an action

Stationary of Preference

U()stands for the utility of the sequence of the rewards receive for visiting states S0, S1, S2…

if
U(S0, S1, S2, …) > U(S0, S1’, S2’, …)
then
U(S1, S2, …) > U(S1’, S2’, …)
在这里插入图片描述
通过方法二 Rmax/(1-γ) 对utility定义可以使有穷数列实现无穷数列的效果(有穷时间走无穷远的距离,但永远走不到边界,有点像奇点singularity)

Optimal Policy
在这里插入图片描述
从某state开始的效用utility并不是指在某state下获得的reward最多(immediate),而是这个state会带来的utility最多(long term),即延时报酬delayed reward

那么所谓最佳策略Optimal Policy,对于从某状态(一般初始状态)对于之后每一个状态返回的动作能够最大化期望效用expected utility

每次在一个state寻找下一次能带来最大化期望的action,通过这个action能进入下一个state’那么一个state的效用就是你在该状态时获得的reward加上你后面将获得的所有奖励和的折扣值,这个也就是Bellman Equation

所以实际上每一个state的utility都来自于positive state的utility传播而来。
在这里插入图片描述
之前的Bellman Equation由于不是线性的,无法迭代来解,若转换成这样便可以了,那么最终就必能等收敛。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值