图论(14)点覆盖与哥尼定理

目录

点覆盖与哥尼定理

点覆盖与最小点覆盖

最大匹配最小点覆盖定理

哥尼定理

托特定理

彼得森定理(要求掌握)


点覆盖与哥尼定理

点覆盖与最小点覆盖

现在还没有好的方法来求最小点覆盖,所以还是得靠观察

点覆盖的本质就是一个顶点子集,匹配时边子集,只不过匹配要求不能里边的边不能有公共交点

最大匹配最小点覆盖定理

上边G打错了,最后一句话,而K是最小覆盖,这个定理说明,当匹配中的边数等于点覆盖中的点数,那么此匹配是最大匹配,点覆盖是最小点覆盖。

哥尼定理

例题:

托特定理

减去一个顶点真子集,得到的图的奇分支数目小于等于改真子集包含的顶点数,注意是任意一个非空真子集S都要满足这个不等式

为什么有完美匹配一定是偶数阶的树呢?因为完美匹配是指匹配中包含的边覆盖了所有的顶点,而且顶点没有重合,所以图的顶点数目就是完美匹配中边的数目的两倍。一定是偶数啦。对于一个偶数阶的树,删去一个顶点,得到的图的顶点数一定是奇数,对于这个奇数阶的图,其奇分支的数目一定是大于等于1的(即o(G-v)>=1),所以就推出了结论。

每个顶点都对应一个奇分支,M是各个顶点连到其对应的奇分支上的边构成的集合。但注意每一个这种边,都对应了两个顶点

彼得森定理(要求掌握)

Gi中总度数2|E(Gi)|,根据是握手定理

在Gi中的点,在原图G中的总度数是3|V(Gi)|,因为原图是3正则图

mi=3|V(Gi)|-2|E(Gi)|,因为mi是S中点连到Gi中的线的数量,也就是原图中Gi中点的度减去Gi中点的度

由于Gi是G-S的所有奇分支,其顶点数为奇数个,所以3|V(Gi)|为奇数,所以mi为奇数,

又因为原图无割边,所以mi>=3,如果mi=1的话,这个mi对应的那1条边就成了割边。

因为mi>=3,所以o(G-S) = k奇分支数目小于等于1/3 \sum_{i=1}^{k}mi,而因为\sum_{i=1}^{k}mi肯定小于S中点的总度数

毕竟S中点之间可能还有连线,所以总的度数肯定是大于k个mi贡献的度数的

注意最后一行应该是=1/3*3|S|=|S|

由托特定理,这就证明了无割边的3正则图一定存在完美匹配

注意:有割边的3正则图不一定存在完美匹配

 

 

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值