一.拉普拉斯变换
1.引入:傅里叶变换的条件在很多情况下无法满足,推广出拉普拉斯变换(傅里叶变换需要满足的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
2.拉普拉斯变换的定义:
表达式: =F(s)
定义 : 如果f(t)在t>=0时有定义,而且在复平面s的某个邻域内收敛,则称其为f(t)的拉普拉斯变换(L-变换)(表示半个复平面)
3.拉普拉斯变换的存在条件
(1)在t>=0的任一有限区间上连续或分段连续
(2)当t趋向于正无穷时,f(x)的增长速度不超过某一个指数函数,即有M>0,C>=0,使f(t)的绝对值小于等于,
4.含有函数的L-变换
5.周期函数的L-变换
6.导数的L-变换
例题:
(1)实部大于0时,均为以下结果
(2)
(3)
(4)
(5)
二.线性时不变系统的冲激响应与卷积
1.线性时不变系统LTI:
叠加原理(f(t)是输入,x(t)是输出)
时不变 :
如果可以得到一个系统的冲激响应,与任意的输入做卷积,得到输出
(从另一方面验证)
三.卷积的L-变换
证明视频:https://www.bilibili.com/video/BV1fs411p7zD?share_source=copy_web