控制工程第三次笔记

这篇博客探讨了L-变换的收敛域及其逆变换在解决微分方程中的应用,强调了极点在逆变换中的关键作用。同时介绍了传递函数的概念,它是系统输出与输入之间的关系,并通过拉普拉斯变换求解。博客还讨论了系统的稳定性分析,特别是如何根据极点位置判断系统的稳定性状态。最后,提到了拉普拉斯变换在微分性质、积分性质和卷积定理中的应用。
摘要由CSDN通过智能技术生成

一.L-变换的收敛域和逆变换

1.收敛域:使f(t)的拉普拉斯变换存在的区域

2.用拉普拉斯变换求解微分(线性时不变系统)方程:S1:把时(t)域转到S域上,L-变换

S2:求解代数方程

S3:再把S域转到时(t)域上  

3.逆变换例:

 

 其中,S=-4,S=-1是极点(极点与逆变换密不可分)

二.传递函数

1.传递函数得来:

进行拉普拉斯变换

·系统的输出X(s)等于传递函数G(s)乘系统的输入U(s)

 

三.系统的稳定性分析(明确研究对象)

1.稳定的定义:

 A 不稳定  B 有界稳定  C稳定

2.例:

总结:设极点为X

 四.拉普拉斯变换的应用

1.微分性质:

 

 积分性质:

 卷积定理:

 运算步骤:

 2.例:

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值