[paper note] Deep Attributes Driven Person Re-identification

Intuition

  • Low level feature sensitive to viewpoint, body poses, etc., and have different character corresponding to different metric learning methods.
  • Attribute is mid-level feature.
  • Problem: it is difficult to acquire enough training data for a large set of attributes.
  • Related work: deep attribute learning works.

Three stage model

three stage model

  • Goal: learn an attribute predict model for person ReID through dCNN training
    AI=(I)
  • First stage: train on attribute dataset
    • AlexNet
    • Dataset T={t1,t2,,tN} labeled with a binary attribute.
    • Get trained model S1 , which could predict attribute for any test sample but lack discriminative power.
  • Second stage: fine-tuning on person ID dataset
    • Dataset U={u1,u2,,uM} has person ID label.
    • Only set attributes with top p=10 highest confidence score as 1, others as 0.
    • Triplet loss
      =eE{max(0,D(A(e)(a),A(e)(p))+θD(A(e)(a),A(e)(n)))+γ×ε}

      ε=D(A(e)(a),à(e)(a))+D(A(e)(p),à(e)(p))+D(A(e)(n),à(e)(p))

      where θ=1 , γ=0.01 in the experiment setting.
    • Get model S2
  • Third stage: fine-tuning on the Combined Dataset
    • First predict attributes for dataset U using S2, act as ground truth attributes.
    • Combine T and U as a big attribute dataset, training to get final deep attribute extractor

Experiment

  • Attribute dataset in first stage: PETA, split multi-class attribute into binary attributes.
  • Tracking dataset in second stage: MOT challenge
  • Attribute accuracy
    attribute accuracy
  • Evaluate: VIPeR, PRID, GRID, Market-1501 (VIPeR, GRID and PRID are included in the PETA dataset, they will be excluded from PETA during training)
  • XQDA metric learning method, further improvement
  • Datasets: VIPeR (43.5%, sor->63.9%), PRID 450S (22.6%, sor->60%+), Market (Single: 39.4%, multiple: 49.0%, sor->78%)
    • sor denotes state-of-the-art
    • The model does not use these three dataset for training, thus it cannot compare directly with supervised re-id model.
  • Additional experiments
    • Combine hand-crafted feature with deep attribute, improve about 8% on VIPeR.
    • Directly fine-tune FC7 feature of AlexNet, deep attribute performs better.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值