协同过滤——基于用户的推荐算法

前段时间,从微薄上得到了一个开源电子书:

下载下来看了一下,发现该书讲的数据挖掘算法浅显易懂,受益匪浅,不敢独享,特将我的理解+精简翻译奉上:

协同过滤

1.1.  共同爱好——我喜欢你所喜欢的。

我们从学习推荐系统来开始数据挖掘之旅,推荐系统到处可见,国外的amazon,国内的京东、淘宝等系统。

如何理解推荐系统呢?我们看一个例子:

例如我们在京东浏览一本《数据挖掘概念与技术》:

从页面向下看:

滚动到页面的最下方,可以看到:

京东根据我们说浏览的图书,自动为我们推荐了一些相关的书籍。

推荐系统就是所谓的协同过滤(collaborative filtering),之所以叫协同,是因为得到推荐结果,是大家的力量——从众多用户那里搜集到信息,从中得到推荐信息。

基于用户的推荐——当系统发现你购买了一本《数据挖掘概念与技术》,而有其他用户同时购买了数据挖掘概念与技术》和《mongobd权威指南》,那么系统猜想你同时喜欢《mongobd权威指南》的可能性也很大,就会把《mongobd权威指南》推荐给你。这种推荐是依据用户相似性,即两个用户有相同的爱好做出的推荐。

基于项目的推荐——将相同类型的东西推荐给用户,如上面的京东推荐的最佳组合就是基于项目的推荐。

首先来看看基于用户的推荐。

1.2.  如何发现两个人具有相似性?

还以图书为例,假设用户对amazon网站的图书进行了评价,从1星到5星,评价从差到好。评价结果如下表:

用户                           书名

Snow Crash

Girl with the

Dragon Tattoo

Amy

5

5

Bill

2

5

Jim

1

4

将结果描述在二维图上:

从图上可以形象的看出:BillJim距离较近。

现在有X先生,他给snow crash打了4星,给dragon tattoo 2星,我们为他推荐什么书籍呢?第一步就是要判断一下X和谁的爱好更相似。

1.2.1.   Manhattan Distance——曼哈顿距离

最简单的距离计算方法就是曼哈顿距离,在二维图上,点Amy的坐标是(x1,y1),X的坐标是(x2,y2),那么amyX之间的曼哈顿距离就是:

|x1-x2|+|y1-y2|

X到三个人的曼哈顿距离是:

 

X的曼哈顿距离

Amy

4

Bill

5

Jim

6

Amy是最近的,从图上也可以看出。那么如果Amy喜欢《The windup girl》,那么我们就把这本书推荐给X先生。

曼哈顿距离的优点是计算速度快,单过于简单。

1.2.2.   EuclideanDistance——欧几里得距离

欧几里得距离是根据毕达哥拉斯定律得到的,至于该定律,想必大家都学过的,就不再多说了。

重新计算三个点到X的欧几里得距离:

 

X的欧几里得距离

Amy

3.16

Bill

3.61

Jim

3.61

1.2.3.   N维扩展

实际情况中,用户可能不止给两本书打分,而是多个,这样就把距离的计算从二维空间推广到了N维空间,当然计算方法是不变的。

计算距离的时候,我们只计算共同项,即标有-标记的书不在计算项目中。

动手:

1.      计算一下HaileyVeronica之间的欧氏距离。

2.      计算一下HaileyJordyn之间的欧氏距离。

答案:

缺陷:从上两题中看出,HaileyVeronica只有两个共同项,但是他们之间的距离却是1.414,而HaileyJordyn之间有5项相同,之间的距离是4.387。很明显,HaileyJordyn之间更相似,但是欧氏距离却更大。这就说明该算法有缺陷。当计算的共同项较多时,计算的距离值可信度就更高。

1.2.4.   算法泛化

1.2.5.   Minkowski距离算法

从曼哈顿距离和欧几里得距离的计算公式,可以推演出所谓的Minkowski距离算法:

r=1时,就是曼哈顿距离;

r=2时,就是欧几里得距离;

r=∞时,就是无上界距离。

1.3.  算法代码实现

基于用户的推荐算法流程:

本文中,使用python来实现以上算法。

准备数据:

将表中的数据使用pythondict存储起来:

 

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0},
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0},
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0},
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0},
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0},
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0}
        }

测试一下

 

>>> users["Veronica"]

>>>{'The Strokes': 3.0, 'Slightly Stoopid': 2.5, 'Norah Jones': 5.0, 'Phoenix': 4.0,

'Blues Traveler': 3.0}

>>>

1.3.1.   曼哈顿距离算法:

def manhattan(rate1,rate2):

    distance = 0

    commonRating = False

    for key in rate1:

        if key in rate2:

            distance+=abs(rate1[key]-rate2[key])

            commonRating=True

    if commonRating:

        return distance

    else:

        return -1

测试算法:

 

>>> manhattan(users['Hailey'], users['Veronica'])

2.0

>>> manhattan(users['Hailey'], users['Jordyn'])

1.5

>>>

算法:找到距离最近的用户列表。

1.3.2.   返回最近距离用户

 

def computeNearestNeighbor(username,users):

    distances = []

    for key in users:

        if key<>username:

            distance = manhattan(users[username],users[key])

            distances.append((distance,key)) 

    distances.sort()          

    return distances

测试:

>>> computeNearestNeighbor('Hailey', users)

[(2.0, 'Veronica'), (4.0, 'Chan'),(4.0, 'Sam'), (4.5, 'Dan'), (5.0, 'Angelica'),

(5.5, 'Bill'), (7.5, 'Jordyn')]

>>> 1.3.3.   为用户推荐。

#推荐

 

def recommend(username,users):

    #获得最近用户的name

    nearest = computeNearestNeighbor(username,users)[0][1]

    recommendations =[]

    #得到最近用户的推荐列表

    neighborRatings = users[nearest]

    for key in neighborRatings:

        if not key in users[username]:

            recommendations.append((key,neighborRatings[key]))

       #排序

    recommendations.sort(key=lambda rat:rat[1], reverse=True)

    return recommendations

 

测试:

>>> recommend('Hailey', users)

[('Phoenix', 4.0), ('Blues Traveler', 3.0), ('Slightly Stoopid', 2.5)]

>>> recommend('Chan', users)

[('The Strokes', 4.0), ('Vampire Weekend', 1.0)]

>>> recommend('Sam', users)

[('Deadmau5', 1.0)]

Ok ,一个简单的推荐算法就完成了。

练习3

实现一个Minkowski距离算法:

 

 

 

答案:

 

#Minkowski 距离

def minkowski(rate1,rate2,r):

    distance = 0

    commonRating = False

    for key in rate1:

        if key in rate2:

            distance+=pow(abs(rate1[key]-rate2[key]),r)

            commonRating=True

    if commonRating:

        return pow(distance,1/r)

    else:

        return -1

练习4

Minkowski算法计算computeNearestNeighbor中的欧几里得距离。

 

 

答案:

 

#返回最近距离用户

def computeNearestNeighbor(username,users):

    distances = []

    for key in users:

        if key<>username:

            distance = minkowski(users[username],users[key],2)

            distances.append((distance,key)) 

    distances.sort()          

return distances

1.3.4.   培生相关系数

用户具有偏见性,如Bill打分在2-4之间,而Hailey打分只有14.Jordyn打分只有45,那么bill打的4分和Jordyn4分是一样的评价吗?显然不是,但是计算的时候,算法是无法判断的。因此需要降低这种主观带来的影响。所以就有了新的算法。

培生相关系数:Pearson Correlation Coefficient

培生相关系数是测量两个变量之间的相关性的数值,其范围是从-11之间。1表示完全一致,-1表示不一致。与距离算法相反,培生相关稀疏越大越好。

算法:

由于该公式较难实现,有了以下近似算法:

上面的公式看似复杂,很吓人,不过可以一一分解:

例如我们计算Angelica Bill之间的培生相关系数:

那么分子就是70-67.5=2.5

再来计算分母:

由此可以看到,两者的是完全相关的。

练习5:实现培生相关系数算法

 

以下是测试结果,用来测试你的算法正确性。

 

>>> pearson(users['Angelica'], users['Bill'])

-0.90405349906826993

>>> pearson(users['Angelica'], users['Hailey'])

0.42008402520840293

>>> pearson(users['Angelica'], users['Jordyn'])

0.76397486054754316

>>>

答案:

 

def pearson(rate1,rate2):

    sum_xy = 0

    sum_x=0

    sum_y=0

    sum_x2=0

    sum_y2=0

    n=0  

    for key in rate1:

        if key in rate2:

            n+=1

            x=rate1[key]

            y=rate2[key]

            sum_xy += x*y

            sum_x +=x

            sum_y +=y

            sum_x2 +=x*x

            sum_y2 +=y*y

    #计算距离

    if n==0:

        return 0

    else:

        sx=sqrt(sum_x2-(pow(sum_x,2)/n))

        sy=sqrt(sum_y2-(pow(sum_y,2)/n))

        if sx<>0 and sy<>0:

            denominator=(sum_xy-sum_x*sum_y/n)/sx/sy

        else:

            denominator=0

    return denominator

练习6:使用培生相关系数替代距离算法,实现简单推荐系统。

 

1.3.5.   余弦相似性

从上表中,我们可以凭感觉:SallyAnn更相似。如何用算法实现上述描述呢?

余弦相似性算法:

余弦相似性的值范围从-11,值越大表示相似性越高。

练习7:实现余弦相似性算法,并改造我们的推荐算法。

 

 

 

1.4.  不同算法的适用情况

1.      如果数据比较稠密(即数据中的空项很少),那么适用距离算法如欧几里得距离等较合适。

2.      如果数据的差异较大(即不同用户的数据差别较大),Pearson算法较合适。

3.      数据稀疏,余弦相关性算法较合适。

1.5.  弱点

单纯的基于用户的推荐系统是有缺陷的,例如推荐系统计算得到王五和张三最相似,王五其实一点也不喜欢张学友,而张三是张学友家亲戚,当然,张三非常喜欢张学友咯。那么推荐系统会把张学友推荐给张三,实际情况适得其反。

仔细分析一下,主要原因是因为我们把希望全寄托在了这个最相似的用户身上。如果多考虑几个相似的用户的喜好,推荐的效果会更好。因此提出了k-nearest neighbor 算法。

1.6.  k-nearest neighbor算法

k-nearest neighbor 算法中的k表示与目标用户最相似的k个用户。例如我们使用pearson算法,得到Ann最相似的三个用户及值:

根据pearson值,计算三个用户所占的权重:

Sally:0.8/(.08+0.7+0.5)=0.4

……

三个人对Grey Wardens的打分:

综合得到AnnGrey Wardens的打分:

Projected rating = (4.5 x 0.25) + (5 x 0.35) + (3.5 x 0.4)= 4.275

 

练习8:将pearson算法改造为k-nearest neighbor

 

本文算法全部代码:

Manhattan http://www.oschina.net/code/snippet_184540_13650
minkowski算法 http://www.oschina.net/code/snippet_184540_13650
pearson算法实现 http://www.oschina.net/code/snippet_184540_13651
余弦相似性实现 http://www.oschina.net/code/snippet_184540_13652
k-nearest neighbor算法 http://www.oschina.net/code/snippet_184540_13653

下一部分:基于项目的推荐算法,slope-one算法

转载于:https://my.oschina.net/jekey/blog/77748

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值