白板推导:线性分类

线性回归的三个特性: 线性,全局性,数据未加工。打破其中一个特性可以转换成其他算法模型。

                   属性非线性(特征)   \rightarrow 特征转换(多项式回归)

1.线性         全局非线性(输出)   \rightarrow线性分类(激活函数)

                   系数非线性(参数)  \rightarrow神经网络

2.全局性      输入x分段     \rightarrow 决策树

3.数据未加工       降维    \rightarrow  PCA,流形

线性分类

硬输出:y\in\begin{Bmatrix} -1,1 \end{Bmatrix};感知机,线性判别分析。

软输出:y\in\begin{bmatrix} 0,1 \end{bmatrix};逻辑回归,高斯判别分析GDA,朴素贝叶斯。

感知机

思想:错误驱动

模型:f(x) = sign(w^{T}x)

loss函数:L(w) = \sum_{i=1}^{N}-y_{i}w^{T}x_{i}

算法:SGD

线性判别分析

思想:类内小,类间大

目标函数:J(w)=\frac{(\bar{z_{1}}-\bar{z_{2}})^{2}}{S_{1}+S_{2}},

z_{1},z_{2}表示各个类别数据在w上的映射之后的均值,S_{1},S_{2}表示各个类别数据在w上的映射之后的方差。

逻辑回归

sigmoid 函数:\sigma (x) = \frac{1}{1+e^{-x}}

P_{0}=\sigma (w^{T}x)P_{1} = 1-P_{0}

MLE:

 \hat{w} = argmax\sum_{i=1}^{N}(y_{i}logP_{0}+(1-y_{i})log(1-P_{1}))

可以看出最大化似然估计的就是负的交叉熵:MLE(max)  \rightarrow  min Cross Entropy

高斯判别分析(GDA)

P(y|x) \propto P(x|y)P(y),生成模型考虑的是联合分布P(x,y)

即 \hat{y} = argmaxP(y|x)=argmaxP(y)P(x|y)

GDA假设:先验P(y)满足伯努利分布,似然满足高斯分布。

y\sim Bernoulli(\phi ) \rightarrow \phi ^{y}(1-\phi )^{1-y}

x|y=1 \sim N(\mu _{1},\Sigma )

x|y=0 \sim N(\mu _{2},\Sigma )

使用最大似然估计求解:\mu _{1}\mu _{2}\Sigma\phi

\hat{\phi }=\frac{N_{1}}{N};\hat{\mu _{1}} = \frac{\sum_{i=1}^{N}y_{i}x_{i}}{N_{1}};\hat{\mu _{2}} = \frac{\sum_{i=1}^{N}(1-y_{i})x_{i}}{N_{2}};\hat{\Sigma }=\frac{N_{1}S_{1}+N_{2}S_{2}}{N}

朴素贝叶斯

思想:朴素贝叶斯假设 \rightarrow 条件独立性假设 \rightarrow​​​​​​​  最简单的概率图模型

视频地址:https://www.bilibili.com/video/av33101528/

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值