一句话记住:信息熵 相对熵(KL散度) 交叉熵 条件熵 联合熵 及其关系

信息熵:H(X)    -\sum P_{i}logP_{i},概率为Pi的事件包含的信息量。

交叉熵:-\sum P_{i}logQ_{i},使用Q_{i}的分布表示P_{i}的分布所使用的信息量。

相对熵:\sum P_{i}log(P_{i }/Q_{i }),使用Q_{i}的分布表示P_{i}的概率所使用的信息量。

关系:信息熵+相对熵=交叉熵

 

条件熵:-\sum _{x ,y}P_{\left ( x,y \right )}logP_{\left ( y|x \right )},已知事件X发生,Y事件发生包含的信息量。

联合熵:-\sum _{x,y}P_{\left ( x,y \right )}logP_{\left ( x,y \right )},事件X,Y共同发生包含的信息量。

关系:信息熵+条件熵=联合熵

 

ps:tfidf可以近似表示为相对熵(有前提条件)。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值