
高等数学
文章平均质量分 87
cchjyq
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
证明:曲线的可导点不能同时为极值点和拐点
设函数fx在某点x0处x0f′x00x0f′′xx0。原创 2025-03-04 21:23:32 · 1736 阅读 · 0 评论 -
计算n! 开 n 次方(n→∞)的极限
n→∞limnn!。原创 2025-02-25 15:20:07 · 3099 阅读 · 0 评论 -
泰勒公式推导以及常用展开式与近似计算
假设我们有一个函数。原创 2025-02-13 21:54:52 · 7272 阅读 · 0 评论 -
洛必达法则的证明与重要条件
洛必达法则其实源自18世纪法国数学家纪尧姆·洛必达(Guillaume de l’Hôpital)。说起来,洛必达虽然并不是第一个提出这个法则的人,但他的名字却成为了这条规则的代名词。因为洛必达有一位数学导师叫做约翰·伯努利(Johann Bernoulli),他在教授洛必达数学时,传授了一些关于极限和微积分的宝贵知识。洛必达后来将这些知识整理并出版成书,其中就包括了如今我们熟知的洛必达法则。不过,尽管洛必达的名字和这条法则紧密相连,实际上他并不是第一个发现这种技巧的数学家。原创 2025-02-11 20:53:10 · 1446 阅读 · 0 评论 -
极限的局部保号性:标准分析与超实数方法的双重证明
是极限理论中的一个基本性质。它表明,如果函数在某一点的极限是非零的,那么在该点附近,函数的符号不会发生变化。在非标准分析(超实数理论)中,我们可以使用超实数来更直观地理解极限的局部保号性。,这意味着在标准分析的语言下,存在某个标准实数。的某个邻域内不会变号,极限的局部保号性得证。附近不变号,我们需要选择一个合适的。,它是一个非零的有限实数。,根据极限的定义,对于任意。在非标准分析中,函数的极限。必须是有限的,并且超接近。的某个邻域内不会变号。,根据极限定义,存在。因此,在超实数框架下,的符号不会发生变化。原创 2025-02-10 22:30:02 · 2285 阅读 · 1 评论 -
证明: 极限的局部有界性
在考研数学中,极限的局部有界性是一个非常重要的概念,尤其是在讨论函数的连续性、可积性和可微性等性质时。局部有界性可以帮助我们理解函数在某些区域内的行为。如果limx→x0fxL,则存在一个邻域U(即包含点x0的开区间),使得对于x∈U,有∣fx∣被某个常数M约束。换句话说,函数fx在点x0附近是局部有界的。原创 2025-02-10 20:17:17 · 1538 阅读 · 0 评论 -
如何证明极限的唯一性
会无限接近某个确定的值。极限的唯一性是极限理论中的一个基本性质,它表明,如果一个函数在某点的极限存在,那么无论我们如何选择趋近的路径,最终得到的极限值都是唯一的。在微积分中,极限用于描述当自变量趋近于某个值时,函数值的行为。存在,那么极限是唯一的,可以通过反证法来进行。根据极限的定义,存在一个。这显然是一个矛盾,因为我们假设。根据极限的定义,对于任意的。,但通过不等式我们得出。所以,极限必须是唯一的。存在,那么它是唯一的。原创 2025-02-10 00:23:22 · 1721 阅读 · 0 评论 -
悬链线的方程及其推导过程
悬链线是描述理想链条或柔软绳索在重力作用下的自然形态的数学曲线。其特征在于:如果将一根均匀、不可伸长的链条两端悬挂在固定点上,链条所呈现的形状就会遵循一种特殊的曲线,这个曲线就是悬链线。通常用于解决悬挂链条的问题,比如桥梁的悬挂索、吊车的链条等。本文将来一步步推导出它的方程,并理解它背后的物理原理。原创 2025-02-08 23:27:47 · 2960 阅读 · 0 评论