计算n! 开 n 次方(n→∞)的极限

我们希望计算以下极限:

lim ⁡ n → ∞ n ! n \lim_{n \to \infty} \sqrt[n]{n!} nlimnn!

方法一

1. 斯特林公式的引入

为了简化计算,我们引入斯特林近似公式,它为我们提供了对 n ! n! n! 的估算:

n ! ∼ 2 π n ( n e ) n n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n n!2πn (en)n

2. 代入斯特林公式

将斯特林近似代入到 n ! n! n! n n n 次方根中,我们得到:

n ! n ∼ 2 π n ( n e ) n n \sqrt[n]{n!} \sim \sqrt[n]{\sqrt{2\pi n} \left( \frac{n}{e} \right)^n} nn! n2πn (en)n

3. 简化表达式

我们可以将这个表达式进一步简化为:

n ! n ∼ 2 π n n ⋅ n e \sqrt[n]{n!} \sim \sqrt[n]{\sqrt{2\pi n}} \cdot \frac{n}{e} nn! n2πn en

现在我们处理第一个部分 2 π n n \sqrt[n]{\sqrt{2\pi n}} n2πn

2 π n n = ( 2 π n ) 1 / ( 2 n ) \sqrt[n]{\sqrt{2\pi n}} = (2\pi n)^{1/(2n)} n2πn =(2πn)1/(2n)

随着 n n n 趋向无穷大, ( 2 π n ) 1 / ( 2 n ) (2\pi n)^{1/(2n)} (2πn)1/(2n) 趋近于 1。因此,我们可以得出:

lim ⁡ n → ∞ n ! n = n e \lim_{n \to \infty} \sqrt[n]{n!} = \frac{n}{e} nlimnn! =en

最终,当 n n n 趋近于无穷大时, n ! n! n! n n n 次方根的极限值为 n e \frac{n}{e} en

方法二

1. 对数转换

首先,对 n ! n! n! 取对数,方便化简计算:

ln ⁡ ( n ! n ) = 1 n ln ⁡ ( n ! ) \ln \left( \sqrt[n]{n!} \right) = \frac{1}{n} \ln(n!) ln(nn! )=n1ln(n!)

因此,问题转化为计算以下极限:

lim ⁡ n → ∞ 1 n ln ⁡ ( n ! ) \lim_{n \to \infty} \frac{1}{n} \ln(n!) nlimn1ln(n!)

2. 利用积分逼近

为了逼近 ln ⁡ ( n ! ) \ln(n!) ln(n!),我们可以使用以下积分公式来表示 n ! n! n!

ln ⁡ ( n ! ) = ∑ k = 1 n ln ⁡ k \ln(n!) = \sum_{k=1}^{n} \ln k ln(n!)=k=1nlnk

然后我们可以将这个求和式近似为积分。对于大的 n n n,可以近似地认为求和就是积分的形式:

∑ k = 1 n ln ⁡ k ≈ ∫ 1 n ln ⁡ x   d x \sum_{k=1}^{n} \ln k \approx \int_1^n \ln x \, dx k=1nlnk1nlnxdx

3. 计算积分

接下来我们计算这个积分:

∫ 1 n ln ⁡ x   d x \int_1^n \ln x \, dx 1nlnxdx

积分的计算可以使用分部积分法。设:

  • u = ln ⁡ x u = \ln x u=lnx, 则 d u = 1 x d x du = \frac{1}{x} dx du=x1dx
  • d v = d x dv = dx dv=dx, 则 v = x v = x v=x

根据分部积分公式 ∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du udv=uvvdu,我们有:

∫ ln ⁡ x   d x = x ln ⁡ x − x \int \ln x \, dx = x \ln x - x lnxdx=xlnxx

∫ 1 n ln ⁡ x   d x = [ x ln ⁡ x − x ] 1 n \int_1^n \ln x \, dx = \left[ x \ln x - x \right]_1^n 1nlnxdx=[xlnxx]1n

代入上下限:

= ( n ln ⁡ n − n ) − ( 1 ln ⁡ 1 − 1 ) = (n \ln n - n) - (1 \ln 1 - 1) =(nlnnn)(1ln11)

由于 ln ⁡ 1 = 0 \ln 1 = 0 ln1=0,得到:

= n ln ⁡ n − n + 1 = n \ln n - n + 1 =nlnnn+1

因此, ∑ k = 1 n ln ⁡ k \sum_{k=1}^{n} \ln k k=1nlnk 的积分近似为:

ln ⁡ ( n ! ) ≈ n ln ⁡ n − n + 1 \ln(n!) \approx n \ln n - n + 1 ln(n!)nlnnn+1

4. 计算极限

回到原来的极限式:

lim ⁡ n → ∞ 1 n ln ⁡ ( n ! ) ≈ lim ⁡ n → ∞ 1 n ( n ln ⁡ n − n + 1 ) \lim_{n \to \infty} \frac{1}{n} \ln(n!) \approx \lim_{n \to \infty} \frac{1}{n} (n \ln n - n + 1) nlimn1ln(n!)nlimn1(nlnnn+1)

这可以进一步简化为:

lim ⁡ n → ∞ ( ln ⁡ n − 1 + 1 n ) \lim_{n \to \infty} (\ln n - 1 + \frac{1}{n}) nlim(lnn1+n1)

n n n 趋向无穷大时, 1 n \frac{1}{n} n1 趋近于 0。因此,极限为:

lim ⁡ n → ∞ ln ⁡ n − 1 = ∞ \lim_{n \to \infty} \ln n - 1 = \infty nlimlnn1=

这表示:

lim ⁡ n → ∞ 1 n ln ⁡ ( n ! ) = ∞ \lim_{n \to \infty} \frac{1}{n} \ln(n!) = \infty nlimn1ln(n!)=

5. 复原回去

我们需要计算的是 lim ⁡ n → ∞ n ! n \lim_{n \to \infty} \sqrt[n]{n!} limnnn! ,所以我们复原回去:

lim ⁡ n → ∞ n ! n = lim ⁡ n → ∞ e 1 n ln ⁡ ( n ! ) = e lim ⁡ n → ∞ ( ln ⁡ n − 1 ) \lim_{n \to \infty} \sqrt[n]{n!} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n!)} = e^{\lim_{n \to \infty} (\ln n - 1)} nlimnn! =nlimen1ln(n!)=elimn(lnn1)

这意味着:

lim ⁡ n → ∞ n ! n = lim ⁡ n → ∞ n e \lim_{n \to \infty} \sqrt[n]{n!} = \lim_{n \to \infty} \frac{n}{e} nlimnn! =nlimen

最终,我们得到:

lim ⁡ n → ∞ n ! n = n e \lim_{n \to \infty} \sqrt[n]{n!} = \frac{n}{e} nlimnn! =en

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值