我们希望计算以下极限:
lim n → ∞ n ! n \lim_{n \to \infty} \sqrt[n]{n!} n→∞limnn!
方法一
1. 斯特林公式的引入
为了简化计算,我们引入斯特林近似公式,它为我们提供了对 n ! n! n! 的估算:
n ! ∼ 2 π n ( n e ) n n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n n!∼2πn(en)n
2. 代入斯特林公式
将斯特林近似代入到 n ! n! n! 的 n n n 次方根中,我们得到:
n ! n ∼ 2 π n ( n e ) n n \sqrt[n]{n!} \sim \sqrt[n]{\sqrt{2\pi n} \left( \frac{n}{e} \right)^n} nn!∼n2πn(en)n
3. 简化表达式
我们可以将这个表达式进一步简化为:
n ! n ∼ 2 π n n ⋅ n e \sqrt[n]{n!} \sim \sqrt[n]{\sqrt{2\pi n}} \cdot \frac{n}{e} nn!∼n2πn⋅en
现在我们处理第一个部分 2 π n n \sqrt[n]{\sqrt{2\pi n}} n2πn:
2 π n n = ( 2 π n ) 1 / ( 2 n ) \sqrt[n]{\sqrt{2\pi n}} = (2\pi n)^{1/(2n)} n2πn=(2πn)1/(2n)
随着 n n n 趋向无穷大, ( 2 π n ) 1 / ( 2 n ) (2\pi n)^{1/(2n)} (2πn)1/(2n) 趋近于 1。因此,我们可以得出:
lim n → ∞ n ! n = n e \lim_{n \to \infty} \sqrt[n]{n!} = \frac{n}{e} n→∞limnn!=en
最终,当 n n n 趋近于无穷大时, n ! n! n! 的 n n n 次方根的极限值为 n e \frac{n}{e} en
方法二
1. 对数转换
首先,对 n ! n! n! 取对数,方便化简计算:
ln ( n ! n ) = 1 n ln ( n ! ) \ln \left( \sqrt[n]{n!} \right) = \frac{1}{n} \ln(n!) ln(nn!)=n1ln(n!)
因此,问题转化为计算以下极限:
lim n → ∞ 1 n ln ( n ! ) \lim_{n \to \infty} \frac{1}{n} \ln(n!) n→∞limn1ln(n!)
2. 利用积分逼近
为了逼近 ln ( n ! ) \ln(n!) ln(n!),我们可以使用以下积分公式来表示 n ! n! n!:
ln ( n ! ) = ∑ k = 1 n ln k \ln(n!) = \sum_{k=1}^{n} \ln k ln(n!)=k=1∑nlnk
然后我们可以将这个求和式近似为积分。对于大的 n n n,可以近似地认为求和就是积分的形式:
∑ k = 1 n ln k ≈ ∫ 1 n ln x d x \sum_{k=1}^{n} \ln k \approx \int_1^n \ln x \, dx k=1∑nlnk≈∫1nlnxdx
3. 计算积分
接下来我们计算这个积分:
∫ 1 n ln x d x \int_1^n \ln x \, dx ∫1nlnxdx
积分的计算可以使用分部积分法。设:
- u = ln x u = \ln x u=lnx, 则 d u = 1 x d x du = \frac{1}{x} dx du=x1dx
- d v = d x dv = dx dv=dx, 则 v = x v = x v=x
根据分部积分公式 ∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫udv=uv−∫vdu,我们有:
∫ ln x d x = x ln x − x \int \ln x \, dx = x \ln x - x ∫lnxdx=xlnx−x
∫ 1 n ln x d x = [ x ln x − x ] 1 n \int_1^n \ln x \, dx = \left[ x \ln x - x \right]_1^n ∫1nlnxdx=[xlnx−x]1n
代入上下限:
= ( n ln n − n ) − ( 1 ln 1 − 1 ) = (n \ln n - n) - (1 \ln 1 - 1) =(nlnn−n)−(1ln1−1)
由于 ln 1 = 0 \ln 1 = 0 ln1=0,得到:
= n ln n − n + 1 = n \ln n - n + 1 =nlnn−n+1
因此, ∑ k = 1 n ln k \sum_{k=1}^{n} \ln k ∑k=1nlnk 的积分近似为:
ln ( n ! ) ≈ n ln n − n + 1 \ln(n!) \approx n \ln n - n + 1 ln(n!)≈nlnn−n+1
4. 计算极限
回到原来的极限式:
lim n → ∞ 1 n ln ( n ! ) ≈ lim n → ∞ 1 n ( n ln n − n + 1 ) \lim_{n \to \infty} \frac{1}{n} \ln(n!) \approx \lim_{n \to \infty} \frac{1}{n} (n \ln n - n + 1) n→∞limn1ln(n!)≈n→∞limn1(nlnn−n+1)
这可以进一步简化为:
lim n → ∞ ( ln n − 1 + 1 n ) \lim_{n \to \infty} (\ln n - 1 + \frac{1}{n}) n→∞lim(lnn−1+n1)
当 n n n 趋向无穷大时, 1 n \frac{1}{n} n1 趋近于 0。因此,极限为:
lim n → ∞ ln n − 1 = ∞ \lim_{n \to \infty} \ln n - 1 = \infty n→∞limlnn−1=∞
这表示:
lim n → ∞ 1 n ln ( n ! ) = ∞ \lim_{n \to \infty} \frac{1}{n} \ln(n!) = \infty n→∞limn1ln(n!)=∞
5. 复原回去
我们需要计算的是 lim n → ∞ n ! n \lim_{n \to \infty} \sqrt[n]{n!} limn→∞nn!,所以我们复原回去:
lim n → ∞ n ! n = lim n → ∞ e 1 n ln ( n ! ) = e lim n → ∞ ( ln n − 1 ) \lim_{n \to \infty} \sqrt[n]{n!} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(n!)} = e^{\lim_{n \to \infty} (\ln n - 1)} n→∞limnn!=n→∞limen1ln(n!)=elimn→∞(lnn−1)
这意味着:
lim n → ∞ n ! n = lim n → ∞ n e \lim_{n \to \infty} \sqrt[n]{n!} = \lim_{n \to \infty} \frac{n}{e} n→∞limnn!=n→∞limen
最终,我们得到:
lim n → ∞ n ! n = n e \lim_{n \to \infty} \sqrt[n]{n!} = \frac{n}{e} n→∞limnn!=en