1. 定义
- a ∣ b , a ∈ Z , b ∈ Z a|b, a \in Z, b \in Z a∣b,a∈Z,b∈Z表示 a a a能整除 b b b。
- a ≡ b ( m o d m ) a \equiv b (\mod m) a≡b(modm), a ∈ Z , b ∈ Z , m ∈ Z a\in Z, b\in Z, m \in Z a∈Z,b∈Z,m∈Z表示 m m m能整除 a − b a-b a−b。
2. 定理
2.1. 定理1
a , b , c ∈ Z , a ≠ 0 a, b, c\in Z, a\neq 0 a,b,c∈Z,a=0,有
- 如果 a ∣ b a|b a∣b且 a ∣ c a|c a∣c,那么 a ∣ ( b + c ) a|(b+c) a∣(b+c)。
- 如果 a ∣ b a|b a∣b,那么对于任何整数c有 a ∣ b c a|bc a∣bc。
- 如果 a ∣ b a|b a∣b且 b ∣ c b|c b∣c,那么 a ∣ c a|c a∣c。
2.1.1. 引理1
如果a、b和c是整数,而且 a ≠ 0 a\neq0 a=0, a ∣ b a|b a∣b, a ∣ c a|c a∣c,那么对于任何整数m、n,都有 a ∣ m b + n c a|mb+nc a∣mb+nc。
2.2. 定理2
除法算法:a是整数,d是正整数。那么存在独一无二的整数q和r,满足 0 ≤ r < d 0\leq r < d 0≤r<d,使得 a = d q + r a=dq+r a=dq+r。
2.3. 定理3
对于 a , b ∈ Z a,b \in Z a,b∈Z和 m ∈ Z + m\in Z^+ m∈Z+, a ≡ b ( m o d m ) a\equiv b (\mod m) a≡b(modm) 当且仅当 a m o d m ≡ b m o d m a\mod m \equiv b \mod m amodm≡bmodm。
2.4. 定理4
有一个正整数m。 a ≡ b ( m o d m ) a\equiv b (\mod m) a≡b(modm)当且仅当存在一个整数k使得 a = b + k m a=b+km a=b+km。
2.5. 定理5
有一个正整数m。如果有 a ≡ b ( m o d m ) a\equiv b (\mod m) a≡b(modm)和 c ≡ d ( m o d m ) c\equiv d(\mod m) c≡d(modm),那么有 a + c ≡ b + d ( m o d m ) a+c\equiv b+d (\mod m) a+c≡b+d(modm)和 a c ≡ b d ( m o d m ) ac\equiv bd (\mod m) ac≡bd(modm)。
2.5.1. 引理2
有一个正整数m和整数a、b,我们有 ( a + b ) m o d m = ( ( a m o d m ) + ( b m o d m ) ) m o d m (a+b)\mod m=((a \mod m)+(b\mod m))\mod m (a+b)modm=((amodm)+(bmodm))modm 和 a b m o d m = ( ( a m o d m ) ( b m o d m ) ) m o d m ab \mod m=((a\mod m)(b\mod m))\mod m abmodm=((amodm)(bmodm))modm成立。