基础数论定义和定理

本文介绍了数论中的基本概念,包括整除性表示、同余关系,以及一系列重要的定理和引理。如定理1阐述了整除性的传递性,定理2详细说明了除法算法,而定理3和4揭示了同余关系的性质。定理5则讨论了同余关系在加法和乘法上的封闭性,引理1和2提供了进一步的推论,为理解数论打下坚实基础。
摘要由CSDN通过智能技术生成

1. 定义

  1. a ∣ b , a ∈ Z , b ∈ Z a|b, a \in Z, b \in Z ab,aZ,bZ表示 a a a能整除 b b b
  2. a ≡ b ( m o d    m ) a \equiv b (\mod m) ab(modm), a ∈ Z , b ∈ Z , m ∈ Z a\in Z, b\in Z, m \in Z aZ,bZ,mZ表示 m m m能整除 a − b a-b ab

2. 定理

2.1. 定理1

a , b , c ∈ Z , a ≠ 0 a, b, c\in Z, a\neq 0 a,b,cZ,a=0,有

  1. 如果 a ∣ b a|b ab a ∣ c a|c ac,那么 a ∣ ( b + c ) a|(b+c) a(b+c)
  2. 如果 a ∣ b a|b ab,那么对于任何整数c有 a ∣ b c a|bc abc
  3. 如果 a ∣ b a|b ab b ∣ c b|c bc,那么 a ∣ c a|c ac

2.1.1. 引理1

如果a、b和c是整数,而且 a ≠ 0 a\neq0 a=0 a ∣ b a|b ab a ∣ c a|c ac,那么对于任何整数m、n,都有 a ∣ m b + n c a|mb+nc amb+nc

2.2. 定理2

除法算法:a是整数,d是正整数。那么存在独一无二的整数q和r,满足 0 ≤ r < d 0\leq r < d 0r<d,使得 a = d q + r a=dq+r a=dq+r

2.3. 定理3

对于 a , b ∈ Z a,b \in Z a,bZ m ∈ Z + m\in Z^+ mZ+ a ≡ b ( m o d    m ) a\equiv b (\mod m) ab(modm) 当且仅当 a m o d    m ≡ b m o d    m a\mod m \equiv b \mod m amodmbmodm

2.4. 定理4

有一个正整数m。 a ≡ b ( m o d    m ) a\equiv b (\mod m) ab(modm)当且仅当存在一个整数k使得 a = b + k m a=b+km a=b+km

2.5. 定理5

有一个正整数m。如果有 a ≡ b ( m o d    m ) a\equiv b (\mod m) ab(modm) c ≡ d ( m o d    m ) c\equiv d(\mod m) cd(modm),那么有 a + c ≡ b + d ( m o d    m ) a+c\equiv b+d (\mod m) a+cb+d(modm) a c ≡ b d ( m o d    m ) ac\equiv bd (\mod m) acbd(modm)

2.5.1. 引理2

有一个正整数m和整数a、b,我们有 ( a + b ) m o d    m = ( ( a m o d    m ) + ( b m o d    m ) ) m o d    m (a+b)\mod m=((a \mod m)+(b\mod m))\mod m (a+b)modm=((amodm)+(bmodm))modm a b m o d    m = ( ( a m o d    m ) ( b m o d    m ) ) m o d    m ab \mod m=((a\mod m)(b\mod m))\mod m abmodm=((amodm)(bmodm))modm成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值