IEEE标准中32位、64位浮点数的取值范围

目录

32位

对于正浮点数

对于零

对于负浮点数 

64位

对于正浮点数

对于负浮点数



IEEE标准中用V=(-1)^s\times M\times 2^E来表示一个浮点数,其中

s决定正负号,M是尾数,E是阶数。

32位

在32位浮点数中,符号位占1位,尾数占23位,阶数占8位。在正常情况下,阶数不包括全零和全一的情况,偏置常数是127,因此它的取值范围是-126-127。尾数值等于1+尾数23位表示的小数。于是

对于正浮点数

\begin{aligned} 1.0\times 2^{-126}\approx 1.1755\times 10^{-38}\le FloatNum \le (2-2^{-23})\times 2^{127}\approx 3.4028\times 10^{38}\end{aligned}

32位浮点数大于3.4\times 10^{38}时,上溢出。当浮点数小于1.2\times 10^{-38}时,也可以溢出。

对于零

float\ number = 0

对于负浮点数 

\begin{aligned} -(2-2^{-23})\times 2^{127}\approx -3.4028\times 10^{38}\le FloatNum \le -1.0\times 2^{-126}\approx -1.1755\times 10^{-38}\end{aligned}

32位浮点数小于-3.4\times 10^{38}时,下溢出。正常的32位浮点数可以表示绝对值最小为1.2\times 10^{-38},有效数位约7~8位。这对于神经网络、PageRank算法的计算已经足够了。纳米是10^{-9}米,微米是10^{-6}米。

64位

在64位浮点数中,符号位占1位,尾数占52位,阶数占11位。在正常情况下,阶数不包括全零和全一的情况,偏置常数是1023,因此它的取值范围是-1022 - 1023,尾数值等于1+尾数52位表示的小数。同理,

对于正浮点数

\begin{aligned} 1.0\times 2^{-1022}\approx2.2251\times 10^{-308}& \leq FloatNum \leq (2-2^{-52}) \times 2^{1023} \approx1.7977\times10^{308} \end{aligned}

对于零和32位类似。

对于负浮点数

\begin{aligned}-(2-2^{-52})\times 2^{1023}\approx -1.7977 \times 10^{308} \le FloatNum\le-1.0\times 2^{-1022}\approx -2.2250 \times 10^{-308}\end{aligned}

64位浮点数可以表示的绝对值,最大为1.8\times 10^{308},最小为2.2\times 10^{-308},有效数位约15位。普朗克常数约为6.6\times 10^{-34}J\cdot s,电子的电荷约为1.6\times 10^{-19}C,阿佛加德罗常数约为6.02\times 10^{22}。双精度浮点数的表示范围远远大于日常生活中的需要。

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值