Python浮点数取值范围
作为一种高级编程语言,Python 的数据类型非常丰富,其中浮点数(floating-point numbers)是非常常用的一种数据类型。它可以表示任意小数,而且它的运算速度非常快,因此在科学计算、数值分析等领域都有广泛的应用。但是,由于计算机内部是使用二进制来表示数字的,所以在 Python 中使用浮点数时需要注意一些取值范围的问题。
二进制浮点数的表示方式
在计算机内部,浮点数是使用 IEEE 754 标准定义的二进制浮点数表示的。这个标准定义了浮点数在计算机内部的存储方式,以及各种浮点数操作的规则。IEEE 754 标准又分为单精度浮点数(32 位)和双精度浮点数(64 位)两种。
在 Python 中,默认使用双精度浮点数进行计算,即使用 64 位来存储浮点数。它的二进制编码如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DeC5oXtJ-1687462153706)(null)]
其中,第一位是符号位(0 表示正数,1 表示负数),接下来的 11 位是指数部分,表示该数的指数,最后的 52 位是小数部分,表示该数的精度。
取值范围
由于双精度浮点数使用 64 位二进制来存储一个数,因此它的取值范围是有限的。在 Python 中,双精度浮点数的取值范围为 1.7976931348623157e+308 到 2.2250738585072014e-308,它们分别表示最大值和最小值。
最大值
最大值是由指数位的最大值和小数位的最大值共同决定的。在双精度浮点数中,指数位的范围是从 0 到 2047,但是指数位不能全为 0 或全为 1,因为这两种情况分别表示 无穷大 和 NaN(非数字),因此指数位的有效范围是从 1 到 2046。另外,小数位有 52 位,可以表示的精度范围为 2 − 52 2^{-52} 2−52(大约为 4.9 × 1 0 − 324 4.9 \times 10^{-324} 4.9×10