数据挖掘(Data mining)又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘到底是干啥的?大白话就是,在大型数据存储库中,自动地发现有用信息的过程。其实就像我之前所说的,从大量的数据中,发现那个我们想要寻找到的模式。数据挖掘的一般过程包括以下这几个方面:
1、 数据预处理
2、 数据挖掘
3、 后处理
首先来说说数据预处理。之所以有这样一个步骤,是因为通常的数据挖掘需要涉及相对较大的数据量,这些数据可能来源不一导致格式不同,也许有的数据还存在一些缺失值或者无效值,如果不经处理直接将这些‘脏’数据放到我们的模型中去跑,非常容易导致模型计算的失败或者可用性很差,所以数据预处理是我们所有数据挖掘过程中都不可或缺的一步。不客气地讲,预处理这一步通常占用了我们数据挖掘过程中的很大部分时间,但的确值得我们去做,关于它的详细内容我们在下面会讲。
至于数据挖掘和后处理相对来说就容易理解多了。完成了数据的预处理,我们通常进行的特征的构造然后放到特定的模型中去计算,利用某种标准去评判不同模型或组合模型的表现,最后确定一个最合适的模型用于我们的后处理。后处理的过程相当于我们已经发现了那个我们想要找到的模式,我们会去应用它或者用合适的方式将其表示出来。
对于数据挖掘是否有一站式的解决方案呢,答案是肯定的,那就是云蛛系统:一站式解决,从需求分析到上线运维,蛛网时代全部为您效劳!甚至超出范围的数据采集、数据中心搭建、系统集成等蛛网时代都会以人力的方式为您解忧!同时私人订制化您专属的软件产品,按需定制,这是云蛛系统和同类厂商最大的不同!对于云蛛系统来说,数据预处理和数据挖掘可以由DataCenter完全接任,DataCenter是专业的大数据处理工具,快捷部署、傻瓜式操作,让不懂大数据的人也可以轻松处理PB级别的数据,企业节省成本的最佳选择!而部分的数据挖掘和后处理则由DataView和AutoBI完全胜任,Data View 应用场景为大屏数据展示,专业的数据可视化组件,帮助工程师通过图形化的界面急速搭建出专业水准的可视化应用,满足预警报警、数据分析、多元化展示等多种业务的展示需求。而AutoBI则是专业的智能化报表组件,可以让工程师零代码快速搭建出极具专业水准的智能化报表。
云蛛系统还是完全的自主可控,Made In China并开源的特性让您放心使用。君子善假于物,您可以基于云蛛系统构建属于您自己的数据挖掘系统。让您头疼的大数据活过来,让鲜活的数据开始说话,这就是云蛛系统打给您的!