题目大意
一个M行N列的棋盘,里面放了M*N个各种颜色的钻石。每一次你可以选择任意两个相邻的颜色不同的钻石,进行交换。两个格子相邻的定义是两个格子有一条公共边。每次交换的分值为通过这次交换后能够形成的最大矩形的面积,具体请见样例。跟传统的钻石游戏不太一样的是,交换后钻石不会消除。现在告诉你每一次操作,请输出每一次所能得到的分值。
解题思路
首先我们可以预处理出一个点往上下左右最远扩展到哪里(同色),每个询问就从两个点中间的连接线o(n)往左往右扩展,求出答案。
code
#include<set>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LD double
#define LL long long
#define max(a,b) ((a>b)?a:b)
#define min(a,b) ((a>b)?b:a)
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
using namespace std;
int const inf=2147483647;
int const maxn=500,maxm=500;
int n,m,p,a[maxm+10][maxn+10],f[maxm+10][maxn+10],ff[maxm+10][maxn+10],g[maxm+10][maxn+10],
gg[maxm+10][maxn+10],b[maxn+10],s[maxn+10],c[maxn+10];
int get(int p){
int ans=1;
int l=p,r=p,mi=b[p];
for(;(l!=1)||(r!=b[0]);){
ans=max(ans,mi*(r-l+1));
if((l!=1)&&(r!=b[0])){
if(b[l-1]>b[r+1]){
mi=min(mi,b[l-1]);
l--;
}else{
mi=min(mi,b[r+1]);
r++;
}
}else if(l!=1){
mi=min(mi,b[l-1]);
l--;
}else{
mi=min(mi,b[r+1]);
r++;
}
}
return max(ans,mi*(r-l+1));
}
int main(){
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
scanf("%d%d",&m,&n);
fo(i,1,m)
fo(j,1,n){
scanf("%d",&a[i][j]);
if(a[i][j]==a[i][j-1])f[i][j]=f[i][j-1]+1;
else f[i][j]=1;
if(a[i][j]==a[i-1][j])g[i][j]=g[i-1][j]+1;
else g[i][j]=1;
}
fd(i,m,1)
fd(j,n,1){
if(a[i][j]==a[i][j+1])ff[i][j]=ff[i][j+1]+1;
else ff[i][j]=1;
if(a[i][j]==a[i+1][j])gg[i][j]=gg[i+1][j]+1;
else gg[i][j]=1;
}
scanf("%d",&p);
fo(i,1,p){
int x,y,xx,yy;scanf("%d%d%d%d",&x,&y,&xx,&yy);
if(x>xx)swap(x,xx);
if(y>yy)swap(y,yy);
swap(a[x][y],a[xx][yy]);
fo(j,1,n)
if(a[x][j]==a[x][j-1])f[x][j]=f[x][j-1]+1;
else f[x][j]=1;
fo(j,1,n)
if(a[xx][j]==a[xx][j-1])f[xx][j]=f[xx][j-1]+1;
else f[xx][j]=1;
fd(j,n,1)
if(a[x][j]==a[x][j+1])ff[x][j]=ff[x][j+1]+1;
else ff[x][j]=1;
fd(j,n,1)
if(a[xx][j]==a[xx][j+1])ff[xx][j]=ff[xx][j+1]+1;
else ff[xx][j]=1;
fo(j,1,m)
if(a[j][y]==a[j-1][y])g[j][y]=g[j-1][y]+1;
else g[j][y]=1;
fo(j,1,m)
if(a[j][yy]==a[j-1][yy])g[j][yy]=g[j-1][yy]+1;
else g[j][yy]=1;
fd(j,m,1)
if(a[j][y]==a[j+1][y])gg[j][y]=gg[j+1][y]+1;
else gg[j][y]=1;
fd(j,m,1)
if(a[j][yy]==a[j+1][yy])gg[j][yy]=gg[j+1][yy]+1;
else gg[j][yy]=1;
int ans=1;
if(x==xx){
int l=x,r=x;
for(;(a[l-1][y]==a[x][y]);l--);
for(;(a[r+1][y]==a[x][y]);r++);
b[0]=0;fo(j,l,r)b[++b[0]]=f[j][y];
ans=get(x-l+1);
l=x,r=x;
for(;(a[l-1][yy]==a[xx][yy]);l--);
for(;(a[r+1][yy]==a[xx][yy]);r++);
b[0]=0;fo(j,l,r)b[++b[0]]=ff[j][yy];
ans=max(ans,get(x-l+1));
}else{
int l=y,r=y;
for(;(a[x][l-1]==a[x][y]);l--);
for(;(a[x][r+1]==a[x][y]);r++);
b[0]=0;fo(j,l,r)b[++b[0]]=g[x][j];
ans=get(y-l+1);
l=y,r=y;
for(;(a[xx][l-1]==a[xx][yy]);l--);
for(;(a[xx][r+1]==a[xx][yy]);r++);
b[0]=0;fo(j,l,r)b[++b[0]]=gg[xx][j];
ans=max(ans,get(y-l+1));
}
printf("%d\n",ans);
}
return 0;
}