2D人体姿态识别-Human3.6M与COCO数据集中,各人体骨骼关键点可视化及对应关节标注顺序(heatmap可视化,热力图和原图融合显示)

本文通过代码展示了Human3.6M数据集中32个关键点和COCO数据集中19个关键点的可视化,包括单个关键点、所有关键点及共同关键点的标注。使用heatmap融合原图进行显示,详细解释了每个关键点对应的身体部位。

003-2.processData


前言

这篇文章里的案例使用的是Human3.6M数据集中S1人物的Sitting 1.55011271.mp4视频中的第13帧作为图片,分别将此帧在Human3.6M中的2D关节点标注在COCO上训练过的Openpose检测出的Heatmap在这帧图片上进行可视化,并一一对照标出了Huamn3.6M中32个关键点和COCO数据集中19个关键点对应的身体部位,找出了在两个数据集中共同的身体部位及其关键点


提示:以下是本篇文章正文内容,下面案例可供参考

一、最终结果展示

1. Human3.6M数据集中32个人体关键点可视化及含义

Human3.6M中的2D keypoints ground-truth可视化:
在这里插入图片描述
对比找到H36M中各关键点所对应的身体部位如下,黄色高光的部位表示H36M和COCO中共有的关键点:
在这里插入图片描述
其中右上图的骨架图来自于博文CSDN:human3.6m数据集格式解析中给出的部分关键点(keypoints),但这里的关键点并不完整。右下图和左表我整理出了完整的各关键点含义(注意有的身体部位被多个关键点重复标注了)。


2. COCO数据集中19个人体关键点可视化及含义

检测出的COCO keypoints heatmap可视化,取heatmap中置信度最高的点作为关节点标红:
在这里插入图片描述
对比找到COCO中各关键点所对应的身体部位如下,黄色高光的部位表示H36M和COCO中共有的关键点:
在这里插入图片描述


3. Human3.6M和COCO两个数据集中共同的身体部位及其关键点

在这里插入图片描述

二、代码展示

以下代码均在Jupyter notebook中运行

1.Human 3.6M部分

1) 引入库

!pip install cdflib

输出如下:
在这里插入图片描述

import cdflib
import numpy as np
from matplotlib import pyplot as plt
import cv2 as cv

2)读入数据

代码如下(示例):

#load a cdf file
cdf= cdflib.CDF('Sitting 1.55011271.cdf')

#Get the variables in the cdf file
x = cdf.varget("Pose")

#Get the keypoints and images at frame 13
x13 = x[:,14,:]
x13 = x13.reshape(
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值