进入互联网时代后的快节奏生活带来了技术的加速,技术的发展带来了快节奏的生活。如今,生活在城市的年轻人,包括学生,面临着快节奏的生活和学习,以及各种压力。据国外媒体报道,马萨诸塞大学计算机科学学院最近发表的一篇研究论文表明,人工智能可以预测压力程度。
“随着可穿戴设备的日益普及,通过Fitbit,Apple Watch和其他智能可穿戴设备引入强大的传感器,生理和行为数据的收集逐渐被接受,使研究人员能够使用这些设备来收集生理学。佩戴者的精神状态,如情绪和压力。“
自2000年以来,研究人员已经测试和研究了人体生理参数,如心率,皮质醇和皮肤电导率,以检测人类的压力;由Mikelsons,G,Smith,M等于2018年发表的论文《利用智慧手機數據進行心理狀態預測的深度學習模式:挑戰與機遇》提出基于位置的MultiLayer感知模型(MLP模型)用于根据收集的数据预测中学生的压力水平。 StudentLife(一款App)基于位置特征和神经网络方法。
这次CALMNet模型已经从之前的压力检测模型进行了改进,仲博爱心之家研究人员推测这是数据作为时间序列的直接结果。 “CALMNet模型将精细时态信息的功能与先进的协变量相结合,为每个学生提供个性化的模型,而不会过度拟合体系结构,有助于提高模型性能。”
据了解,目前的智能穿戴设备主要分为运动和健康应用。目前的智能手环和智能手表仍然不需要像移动互联网时代那样的智能手机,无论功能,可玩性,用户。粘合性不是很好。
尽管如此,必须提到智能可穿戴设备的出货量稳步增长且相当可观。根据IDC的研究数据,2018年可穿戴设备的出货量为1.722亿台,同比增长27.5%。包括Apple,小米,华为,Fitbit和三星可穿戴设备,每个销售额超过一百万,为设备制造商和研究人员带来更多用户和设备的交互式数据和设备监控数据。这些数据将进一步可穿戴。可以增加设备功能和新功能。