三角函数变换是经常被使用的,在做图形相关计算时也很常用:
和角公式:
sin(a+b)=sin(a)cos(b) + sin(b)cos(a)
cos(a+b)=cos(a)cos(b) - sin(a)sin(b)
tan(a+b)=(tan(a)+tan(b)) / (1-tan(a)tan(b) sin(a+b)/cos(a+b) 分子分母除以cos(a)cos(b)
cot(a+b)=(cot(a)cot(b)-1) / (cot(b)-cot(a)) cos(a+b)/sin(a+b) 分子分母除以sin(a)sin(b)
倍角公式:由和角公式推出
sin(2a)=2sin(a)cos(a)
cos(2a)=cos(a)^2-sin(a)^2 =2cos(a)^2 - 1 =1-2sin(a)^2
tan(2a)=2tan(a)/(1-tan(a)^2) sin(2a)/cos(2a) 分子分母除以cos(a)^2
cot(2a)=(cot(a)^2-1)/2cot(a) cos(2a)/sin(2a) 分子分母除以sin(a)^2
半角公式:可由倍角公式的cos(2a)推出
sin(a/2)^2 = (1-cos(a))/2 也相当于 sin(a)^2 = (1-cos(2a))/2
cos(a/2)^2 = (1+cos(a))/2 也相当于 cos(a)^2 = (1+cos(2a))/2
tan(a/2)^2 = sin(a/2)^2 / cos(a/2)^2 = (1-cos(a)) / (1+cos(a))
cot(a/2)^2 = (1+cos(a)) / (1-cos(a))
其它基本关系:
sin(a)^2 + cos(a)^2 = 1
tan(a)^2 + 1 = sec(a)^2
cot(a)^2 + 1 = csc(a)^2
sec(a) = 1/cos(a)
csc(a) = 1/sin(a)
arcsin(x) + arccos(x) = pi/2
arctan(x) + arccot(x) = pi/2
arcsec(x) + arccsc(x) = pi/2