三角函数倍角公式推导

1.sin(2α)=2sin(α)cos(α)

在这里插入图片描述

已知单位圆中有圆周三角形△ABC,圆周角为α,圆心为点O
∴ 圆心角 = 2 ∗ 圆周角 ∴圆心角=2*圆周角 圆心角=2圆周角
∵ ∠ A O C = α , A B = 2 c o s ( α ) , A C = 2 s i n ( α ) ∵∠AOC=α,AB=2cos(α),AC=2sin(α) AOC=α,AB=2cos(α),AC=2sin(α)
做 A P ⊥ B C 于点 P 做AP⊥BC于点P APBC于点P
∴ △ A B P 与△ A P O 共用边 A P ∴△ABP与△APO共用边AP ABPAPO共用边AP
∵ s i n ( α ) ∗ A B = s i n ( 2 α ) ∵sin(α)*AB=sin(2α) sin(α)AB=sin(2α)
∵ s i n ( 2 α ) = 2 s i n ( α ) c o s ( α ) ∵sin(2α)=2sin(α)cos(α) sin(2α)=2sin(α)cos(α)

2. c o s ( 2 α ) = c o s ( α ) 2 − s i n ( α ) 2 cos(2α)=cos(α)^2-sin(α)^2 cos(2α)=cos(α)2sin(α)2

在这里插入图片描述

∴ 圆心角 = 2 ∗ 圆周角 ∴圆心角=2*圆周角 圆心角=2圆周角
∵ ∠ A O C = α , A B = 2 c o s ( α ) , A C = 2 s i n ( α ) ∵∠AOC=α,AB=2cos(α),AC=2sin(α) AOC=α,AB=2cos(α),AC=2sin(α)
做 A P ⊥ B C 于点 P 做AP⊥BC于点P APBC于点P
∵ ∠ P A C + ∠ A C P = ∠ A B C + ∠ A C P ∵∠PAC+∠ACP=∠ABC+∠ACP PAC+ACP=ABC+ACP
∵ ∠ P A C = α ∵∠PAC=α PAC=α
∵ O P = 1 − 2 s i n ( α ) s i n ( α ) = c o s ( 2 α ) ∵OP=1-2sin(α)sin(α)=cos(2α) OP=12sin(α)sin(α)=cos(2α)
∵ c o s ( 2 α ) = 1 − 2 s i n ( α ) 2 ∵cos(2α)=1-2sin(α)^2 cos(2α)=12sin(α)2
∵ c o s ( 2 α ) = c o s ( α ) 2 − s i n ( α ) 2 ∵cos(2α)=cos(α)^2-sin(α)^2 cos(2α)=cos(α)2sin(α)2

3. t a n ( 2 α ) = 2 t a n ( α ) 1 − t a n ( α ) 2 tan(2α)=\frac{2tan(α)}{1-tan(α)^2} tan(2α)=1tan(α)22tan(α)

由公式1,2推tan(2α)
t a n ( 2 α ) = s i n ( 2 α ) c o s ( 2 α ) tan(2α)=\frac{sin(2α)}{cos(2α)} tan(2α)=cos(2α)sin(2α)
= 2 s i n ( α ) c o s ( α ) c o s ( α ) 2 − s i n ( α ) 2 =\frac{2sin(α)cos(α)}{cos(α)^2-sin(α)^2} =cos(α)2sin(α)22sin(α)cos(α)
= 2 t a n ( α ) 1 − t a n ( α ) 2 =\frac{2tan(α)}{1-tan(α)^2} =1tan(α)22tan(α)

4. c o t ( 2 α ) = c o t ( α ) 2 − 1 2 c o t ( α ) cot(2α)=\frac{cot(α)^2-1}{2cot(α)} cot(2α)=2cot(α)cot(α)21

由公式1,2推cot(2α)
c o t ( 2 α ) = c o s ( 2 α ) s i n ( 2 α ) cot(2α)=\frac{cos(2α)}{sin(2α)} cot(2α)=sin(2α)cos(2α)
= c o s ( α ) 2 − s i n ( α ) 2 2 s i n ( α ) c o s ( α ) =\frac{cos(α)^2-sin(α)^2}{2sin(α)cos(α)} =2sin(α)cos(α)cos(α)2sin(α)2
= c o t ( α ) 2 − 1 2 c o t ( α ) =\frac{cot(α)^2-1}{2cot(α)} =2cot(α)cot(α)21

内容概要:本文档《Docker 新手入门指南》详细介绍Docker这一开源容器化平台,旨在帮助新手理解并掌握Docker的核心概念和基本操作。文中首先解释了Docker的概念及其相对于传统虚拟机的优势,如更快的启动速度、更低的资源占用和更好的隔离性。接着,文档提供了详细的安装步骤,包括不同操作系统下的安装方法以及针对国内用户的镜像加速配置。随后,文章深入讲解了镜像管理和容器操作的基础命令,如拉取镜像、运行容器等。进一步地,文档介绍了使用Dockerfile构建自定义镜像、实现数据持久化、进行端口映射以及利用Docker Compose管理多容器应用等高级技巧。最后,给出了一些学习建议和注意事项,鼓励读者动手实验并关注安全性。 适合人群:适合对容器技术感兴趣的初学者,尤其是有一定Linux基础或打算深入了解Docker的开发人员。 使用场景及目标:①帮助读者快速上手Docker,掌握从安装到实际操作的一系列技能;②通过实例演示,如构建Python Web服务、部署WordPress和搭建Jenkins环境,让读者能够将所学应用于实际项目中;③强调容器化的优势,如提高部署效率、解决环境差异问题。 阅读建议:建议读者跟随文档逐步操作,亲身体验每个步骤,同时参考官方文档和社区资源,不断实践以巩固所学知识。特别注意安全性和资源管理方面的提示,确保容器环境的安全稳定运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唐-import-某人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值