题目链接:http://poj.org/problem?id=1012
题意:有2*k个人围城一个圈,前k个是好人,后k个是坏人,现在从第一个开始报数,报到m的出去。求最小的m使得所有的坏人先出去。k<14
思路:约瑟夫环问题,我们可以暴力枚举m,对于每一个m来检查是不是满足情况。先固定了m之后,那么可以看看前k个人是不是在出去k个人之后还留下。只要找到出去一个人后,当前人的编号变化规律就可以了。我们分别检查初始编号为1~k的人是否能留下来。
当前这个人编号为k,报到m的人出圈,当前圈里有n个人(0~n-1)。那么他下一轮的编号就为①k>=m k-m ②k<m k+n-m
比如现在n = 6 , m = 5。0 1 2 3 4 5 然后4出圈了,重新编号,1 2 3 4 × 0 。那么4算出来的理论编号就为4+6-5 = 5,因为当前还剩5个人,编号为0~4,所以就可以判断一开始编号为4的人已经出圈了。我们就这样模拟k次出圈,然后检查是否最后能留下来。
枚举编号可以枚举(k+1)的倍数和(k+1)的倍数+1。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <utility>
using namespace std;
#define rep(i,j,k) for (int i=j;i<=k;i++)
#define Rrep(i,j,k) for (int i=j;i>=k;i--)
#define Clean(x,y) memset(x,y,sizeof(x))
#define LL long long
#define ULL unsigned long long
#define inf 0x7fffffff
#define mod %100000007
int k;
int K;
int ans[20];
bool can(int pos , int step , int n)
{
pos = pos - 1; //[0,k-1] 一开始K个人编号[0,K-1]
int uplim = K;//当前人数
rep(i,1,n) //出去n个人
{
if ( pos >= step ) pos-=step;
else pos = (pos + 10000000 * uplim - step)%uplim; // step可能很大,需要确保加完之后大于step
uplim--; //现在还剩的人数
if ( pos > uplim - 1 ) return false;
}
return true;
}
bool check(int k,int m)
{
rep(i,1,k)
{
if ( !can(i,m,k) ) return false;
}
return true;
}
int main()
{
Clean(ans,-1);
/*
ans[10] = 93313;
ans[11] = 459901;
ans[12] = 1358657;
ans[13] = 2504881;
*/
while(scanf("%d",&k))
{
if ( !k ) break;
if ( ans[k]!=-1 )
{
printf("%d\n",ans[k]);
continue;
}
K = 2*k;
for(int i = k+1; ; i+=k+1)
{
if ( check(k,i) )
{
ans[k] = i;
printf("%d\n",i);
break;
}
if ( check(k,i+1) )
{
ans[k] = i+1;
printf("%d\n",i+1);
break;
}
}
}
return 0;
}