UVA 1632 Alibaba

题目链接:http://acm.hust.edu.cn/vjudge/problem/51193


题意:直线上有n个点,每个点有一个坐标xi和时间di,此点会在di时间时消失。现在可以从任意点出发,问在点消失前访问所有的点的最短时间。


思路:dp[i][j][k]表示已经访问完区间[i,j]内的点,而且此时在区间左端点/右端点的最短时间。那么[i][j][0]由[i+1][j][0/1]转移而来,[i][j][1]由[i][j-1][0/1]转移而来。


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <utility>
using namespace std;

#define rep(i,j,k) for (int i=j;i<=k;i++)
#define Rrep(i,j,k) for (int i=j;i>=k;i--)

#define Clean(x,y) memset(x,y,sizeof(x))
#define LL long long
#define ULL unsigned long long
#define inf 0x7fffffff
#define mod 100000007

const int maxn = 10002;
int n;
int pos[maxn];
int deadline[maxn];
LL dp[maxn][maxn][2];

int cost( int a , int b )
{
    return abs( a - b );
}

void init()
{
    Clean(dp,0x3f);
    rep(i,1,n)
    {
        scanf("%d %d",&pos[i],&deadline[i]);
        if ( deadline[i] > 0 ) dp[i][i][0] = dp[i][i][1] = 0;
    }
}

void solve()
{
    rep(L,2,n)
    rep(i,1,n-L+1)
    {
        int j = i + L - 1;
        int c;
        c = cost( pos[i] , pos[i+1] );
        if ( dp[i+1][j][0] + c < deadline[i] )
            dp[i][j][0] = min( dp[i][j][0] , dp[i+1][j][0] + c );

        c = cost( pos[j-1] , pos[j] );
        if ( dp[i][j-1][1] + c < deadline[j] )
            dp[i][j][1] = min( dp[i][j][1] , dp[i][j-1][1] + c );

        c = cost( pos[i] , pos[j] );
        if ( dp[i+1][j][1] + c < deadline[i] )
            dp[i][j][0] = min( dp[i][j][0] , dp[i+1][j][1] + c );

        if ( dp[i][j-1][0] + c < deadline[j] )
            dp[i][j][1] = min( dp[i][j][1] , dp[i][j-1][0] + c );
    }
    LL ans = min( dp[1][n][0] , dp[1][n][1] );
    if ( ans >= (LL)4557430888798830300 )
        puts("No solution");
    else printf("%lld\n",ans);
}


int main()
{
    while( scanf("%d",&n) == 1 )
    {
        init();
        solve();
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值