大区间筛素数
简述:有的时候,我们需要知道某个特定区间的素数(区间大小较小,但数可能很大)。
那么数组就开不下,这时候我们仍然可以使用筛法,只是所有的下标都进行了偏移。
大家理解下面这段代码可以先用普通筛法写,然后数组下标集体移动即可。
#include<bits/stdc++.h>
const int maxn = 1000001;
int PrimeList[maxn];
int PrimeNum;
bool IsNotPrime[maxn]; // IsNotPrime[i] = 1表示i + L这个数是素数.
void SegmentPrime(int L, int U){// 求区间[L, U]中的素数.
int i,j,SU = sqrt(1.0 * U);//SU是右界平方根
int d = U - L + 1;//d是区间长度
for(i=0;i<d;i++)IsNotPrime[i]=0;//一开始全是素数,IsNotPrime就是标记是否素数,注意从0起
for(i=(L%2!=0);i<d;i+=2)IsNotPrime[i]=1;//把偶数的去掉,左界除尽2从左界起,左界除不尽从左界+1起
for (i = 3; i <= SU; i += 2){//i由3起到根号右界,以2的步长遍历(就是遍历奇数)
if(i>L&&IsNotPrime[i-L])continue;//i>L必定已更新,IsNotPrime[i-L]==1说明i不是素数.
j=(L/i)*i;//j为i的倍数,且最接近L的数,首先保证了J是I的倍数,后面J每次再加i也能保证j是合数
if(j<L)j+=i;//j<L是指L不能除尽I,则把J加上一个I(依然是I倍数),保证在区间内
if(j==i)j+=i;//J==I就是(L/i)==1刚好枚举的I是左界则左界加i起肯定不是质数,如果I是合数,已在前面出
j=j-L;//J已经保证是I的倍数且大于1倍,对下标偏移每次加上I,必定是I的倍数,即必定不是素数
for(;j<d;j+=i)IsNotPrime[j]=1;//说明j不是素数(IsNotPrime[j - L] = 1).
}
if (L <= 1) IsNotPrime[1 - L] = 1;//左界是1,则IsNotPrime[0]=1,即不是质数
if (L <= 2) IsNotPrime[2 - L] = 0;//左界是2,则IsNotPrime[0]=0,2是质数,左界是1则3也是质数
PrimeNum = 0;//素数个数是开始是0
for(i=0;i<d;i++)if(!IsNotPrime[i])PrimeList[PrimeNum++]=i+L;//扫一次是质数就由下标偏移L打入表中
}
int main(){
int l,r;
while(scanf("%d%d",&l,&r)==2){
SegmentPrime(l,r);//求lr区间素数个数
printf("%d\n",PrimeNum);
}
return 0;
}
In 100 200
Out 21