[Algorithm] 科学家的h-index的理解与算法实现(Python)

1. h-index有什么用?☕️

h指数是一种学术评价指标,用于衡量学术作者的学术影响力和产出数量之间的平衡。通过分析作者的论文引用次数来计算,考虑了作者的高引用论文数量以及这些论文的引用次数。

2. h-index的定义是什么?🤔️

一个学者的H指数是指TA的论文数量中至少有h篇论文被引用了至少h次,而其他论文的引用次数不超过h次。

3. 如何计算h-index? 🧮

假设有一个研究人员,他的论文被引用次数如下:

论文1:10次
论文2:8次
论文3:5次
论文4:3次
论文5:2次

首先,将论文按照引用次数从高到低排序:

论文1:10次
论文2:8次
论文3:5次
论文4:3次
论文5:2次

然后,从最高引用次数的论文开始计数,找到最大的h值,即至少有h篇论文被引用了至少h次。在这个例子中,因为,10 >= 1; 8 >= 2; 5 >= 3; 3 !>= 4我们可以看到有3篇论文满足这个条件(论文1、论文2和论文3)。因此,该研究人员的H指数为3。

4. 编写算法实现 💻

⚠️:注意极限情况下的细节问题。

def h_index(arr):
    if len(arr) == 0:
        return 0
    
    list(arr)
    arr.sort(reverse=True)
    for index, num in enumerate(arr):
        if index + 1 == len(arr):
            return index + 1
        if index + 1 <= num:
            continue
        else:
            return index

if __name__ == "__main__":
    print(h_index([8, 7, 6, 5, 5, 4, 4, 3, 2, 1]))  # 5
    print(h_index([10, 9, 0, 0, 0]))  # 2
    print(h_index([0, 1, 0, 3, 4, 1, 0]))  # 2
    print(h_index([0, 0, 0, 0, 0]))  # 0
    print(h_index([])) # 0

请添加图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chae_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值