CULane评价指标

评价指标
cuLane数据集:把车道线看作30个像素宽的长条状目标,通过计算预测车道线和gt车道线的IoU判断是否为True Positive。如果IoU大于某个threshold,则认定为True Positive。然后计算Precison和Recall,再计算F1-score。
TuSimple数据集:pixel accuracy
https://blog.csdn.net/sinat_24674017/article/details/94988436

### UFLD 数据集介绍 UFLD 是 Ultra Fast Lane Detection (UFLD) 和其后续版本 UFLD-v2 所依赖的主要数据集之一。尽管具体的 UFLD 数据集并未被明确提及,但从引用的内容来看,它通常指的是 CULane 或 TuSimple 这类车道线检测的标准公开数据集[^4]。 #### 数据集特点 CULane 数据集是一个常用的车道线检测基准数据集,具有以下特性: - **分辨率**: 原始分辨率为 1640×590。 - **复杂场景支持**: 包含多种复杂的驾驶环境,例如遮挡、光照变化和天气条件影响下的车道线。 - **标注质量高**: 提供了精确的像素级标注,适合用于语义分割任务或端到端车道线检测模型训练。 TuSimple 数据集则主要用于评估简单道路条件下车道线检测算法的表现,其特点是: - **分辨率较低**: 图片原始分辨率为 720P。 - **相对简单的场景**: 更加关注高速公路或城市道路上较为清晰的车道线识别。 为了适应不同的硬件性能需求并提高推理效率,许多研究者会对输入图像进行预处理操作,比如调整分辨率至更低尺寸(如 288×800 或 256×512),从而减少计算开销。 --- ### UFLD 数据集使用方法 当准备使用类似于 UFLD 的框架来完成车道线检测任务时,需按照如下方式进行配置: #### 配置文件说明 在 `configs/` 文件夹中找到对应的 Python 配置文件,例如 `culane_res34.py`。该文件定义了一系列重要参数,具体包括以下几个方面[^2]: - **网络架构**: 明确指定所采用的基础神经网络结构,像 ResNet-34 就常作为骨干网应用于 CULane 数据集中。 ```python model = dict( type='LaneDetector', backbone=dict(type='ResNet', depth=34), neck=None, head=dict(type='UFHead') ) ``` - **数据集路径**: 设置本地存储的数据目录地址以便加载训练样本与验证集合。 ```python data_root = '/path/to/culane' train_dataset = 'train.txt' # 训练列表文件名 val_dataset = 'val.txt' # 测试列表文件名 ``` - **训练超参设定** - **批量大小 (`batch_size`)、迭代次数 (`epochs`) 及初始学习率 (`lr`) 等**均会影响最终收敛效果; - 不同优化策略可能带来显著差异,推荐尝试 Adam 或 SGD 并微调各自的学习率衰减计划。 ```python optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01) total_epochs = 20 batch_size_per_gpu = 8 ``` - **损失函数设计**: 定义如何衡量预测结果相对于目标标签之间的误差程度,一般会结合交叉熵损失与其他辅助约束共同构建综合评价指标。 - **前后处理细节**: 对于输入图片而言,往往涉及标准化变换、随机裁切增强等手段;而在输出阶段,则要依据特定规则提取有效边界点形成连续曲线表示形式。 此外,在某些扩展版本里还引入了一个额外选项——即允许切换不同类型的训练模式(`train_method`)以满足个性化定制需求[^3]: ```python train_cfg = dict(train_method="standard") # standard / custom ``` 通过上述各项合理组合即可顺利开展针对选定数据源上的实验流程。 --- ### 实验建议 考虑到实际部署环境中资源受限的情况,可考虑适当简化模型规模或者压缩特征映射维度的同时兼顾精度表现。例如利用 MobileNetV2 替代传统卷积层密集型组件,并配合较小尺度的空间采样方案达到快速响应目的。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值