Tensorflow释放GPU资源

语言:python
框架:tensorflow
现有问题:用tensorflow进行模型训练,训练完成后用tf.keras.backend.clear_session()命令无法真正实现释放资源的效果。
解决方案:创建多进程,将模型训练作为子进程,模型训练完成后,子进程会自动释放GPU资源。

def train():
    try:
        # 加锁检查任务状态(避免竞争条件)
        with training_lock:
            process = multiprocessing.Process(
                target=start_train
            )
            process.start()

            启动超时监控线程
            def monitor_timeout():
                process.join(timeout=3600)  # 1小时超时将停止
                if process.is_alive():
                    process.terminate()
                    process.join()
            
            threading.Thread(target=monitor_timeout, daemon=True).start()

        return {
            "success": True,
            "message": "开始训练"
        }
    except Exception as e:
        log.error(traceback.format_exc())
        return {
            "success": False,
            "message": str(e)
        }
       
def start_train():
    # 模型正真训练代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值