语言:python
框架:tensorflow
现有问题:用tensorflow进行模型训练,训练完成后用tf.keras.backend.clear_session()命令无法真正实现释放资源的效果。
解决方案:创建多进程,将模型训练作为子进程,模型训练完成后,子进程会自动释放GPU资源。
def train():
try:
# 加锁检查任务状态(避免竞争条件)
with training_lock:
process = multiprocessing.Process(
target=start_train
)
process.start()
启动超时监控线程
def monitor_timeout():
process.join(timeout=3600) # 1小时超时将停止
if process.is_alive():
process.terminate()
process.join()
threading.Thread(target=monitor_timeout, daemon=True).start()
return {
"success": True,
"message": "开始训练"
}
except Exception as e:
log.error(traceback.format_exc())
return {
"success": False,
"message": str(e)
}
def start_train():
# 模型正真训练代码