用ChatGPT尝试理解Transformer模型

(ChatGPT) 用魔法。。。 理解魔法

Q \color{red}{Q} Q:

写出Transformer伪算法,用markdown语法输出,包含latex公式

A \color{red}{A} A:

输入:输入序列 X = ( x 1 , x 2 , . . . , x n ) X=(x_1, x_2, ..., x_n) X=(x1,x2,...,xn),输出序列 Y = ( y 1 , y 2 , . . . , y m ) Y=(y_1, y_2, ..., y_m) Y=(y1,y2,...,ym),词向量维度 d d d,编码器层数 L L L,解码器层数 D D D,头数 h h h,前馈神经网络隐藏层大小 d f f d_{ff} dff,dropout概率 p d r o p p_{drop} pdrop,学习率 α \alpha α 和最大迭代次数 T T T

输出:预测序列 Y h a t = ( y h a t 1 , y h a t 2 , . . . , y h a t m ) Y_{\rm{hat}} = (y_{\rm{hat}1}, y_{\rm{hat}2}, ..., y_{\rm{hat}m}) Yhat=(yhat1,yhat2,...,yhatm)

  1. 对输入序列和输出序列中的每个单词进行词向量编码,得到编码后的输入序列和输出序列,分别为 E X E_X EX E Y E_Y EY
  2. E X E_X EX E Y E_Y EY 进行位置编码。
  3. 初始化编码器和解码器,编码器中的每个层包括一个多头自注意力机制和一个前馈神经网络,解码器中的每个层包括一个多头自注意力机制、一个多头编码器-解码器注意力机制和一个前馈神经网络。
  4. 对于 t t t 从 1 到 T T T 的每个迭代:
    • 计算编码器输出: Z 0 = E X Z_0 = E_X Z0=EX,对于 i i i 从 1 到 L L L 的每个层 l i l_i li,计算 Z i = l i ( Z i − 1 ) Z_i = l_i(Z_{i-1}) Zi=li(Zi1)
    • 计算解码器输出: Z 0 = E Y Z_0 = E_Y Z0=EY,对于 i i i 从 1 到 D D D 的每个层 l i l_i li,计算 Z i = l i ( Z i − 1 , Z L ) Z_i = l_i(Z_{i-1}, Z_L) Zi=li(Zi1,ZL),其中 Z L Z_L ZL 为编码器输出的最后一层。
    • 对解码器输出进行线性变换,得到最终预测序列: Y h a t = s o f t m a x ( W o Z D ) Y_{\rm{hat}} = \rm{softmax}(W_o Z_D) Yhat=softmax(WoZD),其中 W o W_o Wo 是一个学习参数矩阵。
    • 计算损失函数 L L L,例如交叉熵损失函数。
    • 计算损失函数对参数的梯度。
    • 使用梯度下降算法更新参数。
    • 如果损失函数满足收敛条件,则停止迭代。

Q \color{red}{Q} Q:

写出多头自注意力机制伪算法,用markdown语法输出,包含latex公式

A \color{red}{A} A:

输入:查询向量 Q Q Q,键向量 K K K,值向量 V V V,多头数 h h h,每头注意力机制的维度 d k d_k dk 和输出维度 d o d_o do

输出:多头自注意力机制的输出向量 O O O

  1. Q Q Q K K K V V V 分别映射到 d k d_k dk 维空间中,得到 Q ′ ∈ R d k Q' \in \mathbb{R}^{d_k} QRdk K ′ ∈ R d k K' \in \mathbb{R}^{d_k} KRdk V ′ ∈ R d k V' \in \mathbb{R}^{d_k} VRdk
  2. Q ′ Q' Q K ′ K' K V ′ V' V 分别分为 h h h 份,并将每份 d k / h d_k/h dk/h 维,得到 Q 1 , Q 2 , . . . , Q h ∈ R d k / h Q_1, Q_2, ..., Q_h \in \mathbb{R}^{d_k/h} Q1,Q2,...,QhRdk/h K 1 , K 2 , . . . , K h ∈ R d k / h K_1, K_2, ..., K_h \in \mathbb{R}^{d_k/h} K1,K2,...,KhRdk/h V 1 , V 2 , . . . , V h ∈ R d k / h V_1, V_2, ..., V_h \in \mathbb{R}^{d_k/h} V1,V2,...,VhRdk/h
  3. 对于 i i i 从 1 到 h h h,计算注意力权重 w i w_i wi
    w i = s o f t m a x ( Q i K i T d k / h ) w_i = \rm{softmax}(\frac{Q_i K_i^T}{\sqrt{d_k/h}}) wi=softmax(dk/h QiKiT)
  4. 对于 i i i 从 1 到 h h h,计算注意力向量 a i a_i ai
    a i = w i V i a_i = w_i V_i ai=wiVi
  5. 将所有的注意力向量 a 1 , a 2 , . . . , a h a_1, a_2, ..., a_h a1,a2,...,ah 拼接成一个 d k d_k dk 维向量 A A A
  6. A A A 映射到 d o d_o do 维空间中,得到 O O O
    O = R e L U ( W o A + b o ) O = \rm{ReLU}(W_o A + b_o) O=ReLU(WoA+bo)
    其中 W o ∈ R d o × d k W_o \in \mathbb{R}^{d_o \times d_k} WoRdo×dk b o ∈ R d o b_o \in \mathbb{R}^{d_o} boRdo 是学习参数。

ps: Q = X W q , K = X W k , V = X W v Q = XW_q, K = XW_k, V = XW_v Q=XWq,K=XWk,V=XWv

Q \color{red}{Q} Q:

w i = s o f t m a x ( Q i K i T d k / h ) w_i = \rm{softmax}(\frac{Q_i K_i^T}{\sqrt{d_k/h}}) wi=softmax(dk/h QiKiT)解释这个公式的含义

A \color{red}{A} A:

这个公式是多头自注意力机制中计算注意力权重的公式。

在该公式中, Q i Q_i Qi K i K_i Ki 分别表示输入的查询向量和键向量经过分割之后的第 i i i 个部分。 1 d k / h \frac{1}{\sqrt{d_k/h}} dk/h 1 是一个归一化因子, d k / h d_k/h dk/h 是每个注意力头的维度,也就是将查询向量和键向量分成 h h h 份时每份的维度。

那么, Q i K i T d k / h \frac{Q_i K_i^T}{\sqrt{d_k/h}} dk/h QiKiT 是计算第 i i i 个注意力头中的 Q i Q_i Qi K i K_i Ki 的相似度。然后,对相似度进行 softmax 操作,得到该头注意力权重的分布 w i w_i wi

具体来说,softmax 会将相似度 Q i K i T d k / h \frac{Q_i K_i^T}{\sqrt{d_k/h}} dk/h QiKiT 转换为一个概率分布 w i w_i wi,使得 w i w_i wi 中的所有元素都在 0 到 1 之间,并且所有元素的和为 1。这意味着注意力权重 w i w_i wi 可以用来表示每个键向量 K i K_i Ki 对查询向量 Q i Q_i Qi 的重要性。

Q \color{red}{Q} Q:

w i = s o f t m a x ( Q i K i T d k / h ) w_i = \rm{softmax}(\frac{Q_i K_i^T}{\sqrt{d_k/h}}) wi=softmax(dk/h QiKiT)是怎么推导出来的

A \color{red}{A} A:

多头自注意力机制中计算注意力权重的公式 w i = s o f t m a x ( Q i K i T d k / h ) w_i = \rm{softmax}(\frac{Q_i K_i^T}{\sqrt{d_k/h}}) wi=softmax(dk/h QiKiT) 可以通过以下步骤进行推导。

首先,对于一个查询向量 Q i Q_i Qi 和一个键向量 K j K_j Kj,它们的相似度可以用点积运算进行计算:
Q i K j Y d \frac{Q_i K^Y_j}{\sqrt{d}} d QiKjY

在这个公式中, d d d 是向量的维度,除以 d \sqrt{d} d 是为了缩小点积的范围,避免它过大或过小,同时也有助于使梯度变得更加稳定。

由于一个查询向量需要和所有的键向量计算相似度,因此我们可以将所有的键向量拼接成一个矩阵 K K K,然后将其与查询向量 Q i Q_i Qi 相乘,得到一个长度为 n n n 的向量,其中 n n n 是键向量的数量。然后,我们将该向量传递给 softmax 函数,以获得归一化的注意力权重:

w i = s o f t m a x ( Q i K T d ) w_{i}=\mathrm{softmax}(\frac{\mathrm{Q_{i}K^{\mathrm{T}}}}{\sqrt{\mathrm{d}}}) wi=softmax(d QiKT)

接下来,为了让模型可以学习到不同的注意力模式,我们引入多头注意力机制,将查询向量、键向量和值向量分别映射到 h h h 个不同的向量空间中,这些向量空间的维度为 d k d_k dk。对于每个注意力头 i i i,我们将分别计算 Q i Q_i Qi K i K_i Ki 的相似度,然后使用 softmax 函数进行归一化,得到该头的注意力权重 w i w_i wi。具体而言,我们可以将每个头的注意力权重计算公式表示为:

w i = s o f t m a x ( Q i K i T d k ) w_{i}=\mathrm{softmax}(\frac{\mathrm{Q_{i}K_{i}^{\mathrm{T}}}}{\sqrt{\mathrm{d}_{k}}}) wi=softmax(dk QiKiT)

由于 Q i Q_i Qi K i K_i Ki 的维度为 d k d_k dk,因此在计算相似度时不再需要除以 d \sqrt{d} d ,而是除以 d k \sqrt{d_k} dk ,这个值被称为标准化因子,确保每个头的输出都具有相同的方差。

最终,我们将每个头的注意力权重 w i w_i wi 和对应的值向量 V i V_i Vi 进行加权平均,得到最终的多头自注意力机制的输出向量 O O O

O = ∑ i = 1 h w i V i O=\sum_{i=1}^{h}w_{i}V_{i} O=i=1hwiVi

综上所述,多头自注意力机制中计算注意力权重的公式 w i = s o f t m a x ( Q i K i T d k / h ) w_i = \rm{softmax}(\frac{Q_i K_i^T}{\sqrt{d_k/h}}) wi=softmax(dk/h QiKiT) 就是上述推导结果中的一个特例,其中 Q i Q_i Qi K i K_i Ki 表示将查询向量和键向量映射到第 i i i 个向量空间中的结果, d k d_k dk 表示每个向量空间的维度, h h h 表示头的数量, d k / h \sqrt{d_k/h} dk/h 表示标准化因子,用于缩放相似度得分。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值