玩转ChatGPT:Transformer分类模型

一、写在前面

之前,我们介绍了Sklearn包以及Boost辈的各种分类模型,这些模型都很经典了,实际上也很强大,比如说Xgboost。

然而,近期随着ChatGPT的大火,其底层框架Transformer也逐渐火了,现在大家朝着通用人工智能的方向靠拢。因此,我在想,尝试使用Transformer框架做一做临床诊断/预后问题(本质上就是分类问题),看看效果如何。

首先使用GPT简单科普Transformer框架:

二、尝鲜过程

实际上,我对于Transformer框架一概不知。所以,无脑求助GPT。

(1)用TA提供一个基础代码:

咒语:我有一个<临床数据>,其中“X1”列表示病人的预后(0表示生存,1表示死亡),其余列“X3”至“X19”表示临床自变量。

我需要写一个Transformer框架做分类的代码,使用“X3”至“X19”这17个自变量去预测“X1”,请用python帮我写出代码。

数据格式如下:

<

X1 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

0 0 0 0 0 0 0 2.17 22 6.5 295 1.16 0.08 3.52 224 0.33 0 82.6

0 1 0 0 0 1 0 1.17 23 24.3 261 0.79 0.04 3.75 59 0.27 0.02 53.3

0 0 0 0 0 0 0 1.82 63.99 3.9 460.67 1.2 0.05 4.8 21 0.07 0 38.3

1 0 0 0 1 1 0 2.13 63.99 15.7 401.3 1.24 0.12 5.1 147 0.9 0.01 80.84

>

回复如下:

首先得安装PyTorch,具体安装教程就不说了。算了,还是说一下:

(a)打开Anaconda Prompt;

(b)打开Pytorch官网(https://pytorch.org/)寻找安装命令代码,根据自己的需求选择安装条件,比如我的LOW电脑没有GPU,只能用CPU;

(c)在Anaconda Prompt输入代码安装(记得切换好安装环境):

conda install pytorch torchvision torchaudio cpuonly -c pytorch

回车安装即可。

再附上GPT给的代码:

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

import pandas as pd

import numpy as np

# 加载数据

data = pd.read_csv('your_data.csv')  # 请用您数据的实际路径替换 'your_data.csv'

X = data.loc[:, 'X3':'X19'].values

y = data['X1'].values

# 数据预处理

scaler = StandardScaler()

X = scaler.fit_transform(X)

# 划分数据集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建PyTorch数据加载器

train_data = torch.utils.data.TensorDataset(torch.Tensor(X_train), torch.Tensor(y_train))

test_data = torch.utils.data.TensorDataset(torch.Tensor(X_test), torch.Tensor(y_test))

train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)

test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=True)

# 定义设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 创建Transformer模型

class TransformerModel(nn.Module):

    def __init__(self, input_dim, output_dim, nhead=1):

        super(TransformerModel, self).__init__()

        self.encoder = nn.TransformerEncoder(

            nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),

            num_layers=3

        )

        self.classifier = nn.Linear(input_dim, output_dim)

    def forward(self, x):

        x = self.encoder(x)

        x = self.classifier(x)

        return x

# 初始化模型和优化器

model = TransformerModel(input_dim=X.shape[1], output_dim=2).to(device)

optimizer = optim.Adam(model.parameters(), lr=0.001)

criterion = nn.CrossEntropyLoss()

# 训练模型

for epoch in range(100):

    for i, (inputs, labels) in enumerate(train_loader):

        inputs, labels = inputs.to(device), labels.to(device)

        

        optimizer.zero_grad()

        

        outputs = model(inputs)

        loss = criterion(outputs, labels.long())

        

        loss.backward()

        optimizer.step()

    print(f'Epoch {epoch+1} / 100: Average Loss: {loss.item()}')

(2)模型需要计算性能参数

写咒语:我还需要做得出模型在训练集和测试集上的性能指标,包括灵敏度、特异度和AUC值,帮我更新代码。

TA又更新了代码(只显示更新的部分):

# 训练模型

for epoch in range(20):

    for i, (inputs, labels) in enumerate(train_loader):

        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()

        outputs = model(inputs)

        loss = criterion(outputs, labels.long())

        loss.backward()

        optimizer.step()

    # 验证模型

    model.eval()

    with torch.no_grad():

        # 训练集

        predictions = []

        truths = []

        for inputs, labels in train_loader:

            inputs, labels = inputs.to(device), labels.to(device)

            output = model(inputs)

            _, predicted = torch.max(output.data, 1)

            predictions += predicted.tolist()

            truths += labels.tolist()

        tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()

        sensitivity = tp / (tp + fn)

        specificity = tn / (tn + fp)

        auc = roc_auc_score(truths, predictions)

        #print(f'Epoch {epoch+1} / 100, Training: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')

 # 测试集

        predictions = []

        truths = []

        for inputs, labels in test_loader:

            inputs, labels = inputs.to(device), labels.to(device)

            output = model(inputs)

            _, predicted = torch.max(output.data, 1)

            predictions += predicted.tolist()

            truths += labels.tolist()

        tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()

        sensitivity = tp / (tp + fn)

        specificity = tn / (tn + fp)

        auc = roc_auc_score(truths, predictions)

        print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')

把数据带进去运行试试:

可以看到,应该还是有一些过拟合的现象。

(3)继续施咒,如何改善过拟合。

施咒:上述的代码运行后出现过拟合,如何改善?

总体的挺到位的。我们来看看:

数据量就不考虑了,我也想要更多数据。更简单的模型,说的有道理,不过现在是测试这个面模型的性能。早停法也不适合,因为从20次迭代来看,都是过拟合的,你怎么样TA停,同样,交叉验证也是不可行。所以,试试其他的办法。

(4)增加正则化。

咒语:如何在代码中增加正则化项,请帮我改写相关代码段。

然后我加进去了,没啥效果。这是L2正则化,然后又问了L1正则化:

同样效果也不明显。

(5)减少模型复杂度。

咒语:如何做到“减少编码器层的数量、减少自注意力机制的头数或降低前馈神经网络的隐藏单元数量”,请分别修改代码段展示。

GPT注意给了回复,这里我一起展示:

# 创建Transformer模型

class TransformerModel(nn.Module):

    def __init__(self, input_dim, output_dim, nhead=1):

        super(TransformerModel, self).__init__()

        self.encoder = nn.TransformerEncoder(

            nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),

            num_layers=int(0.5 * input_dim) # 减少层数

        )

        self.norm = nn.BatchNorm1d(input_dim)  # 添加批归一化层        

        self.classifier = nn.Linear(input_dim, output_dim)

        self.dropout = nn.Dropout(1)  # 添加一个dropout层  

然后,效果也是不明显。

看来过拟合不好解决,同时我们可以看到,Sensitivity都是比Specificity要小的,这也可以理解,因为这是一个不平衡数据(正比负是1:3),下一步考虑从这一点入手。

(6)处理不平衡数据。

咒语:Sensitivity远远比Specificity要小,请问如何改进代码?

我们来分析下:重采样就算了,尽量不要动原始数据。第三个看不懂。所以,试试改变阈值。

(7)改变阈值。

咒语:改代码中如何改变阈值?请修改相应代码段。

代码如下:

# 验证模型

model.eval()

with torch.no_grad():

    # 测试集

    predictions = []

    truths = []

    for inputs, labels in test_loader:

        inputs, labels = inputs.to(device), labels.to(device)

        output = model(inputs)

        # 将输出结果用 softmax 函数转换为概率

        probabilities = torch.nn.functional.softmax(output, dim=1)

        # 调整阈值,例如设定阈值为 0.3

        threshold = 0.3

        predicted = (probabilities[:, 1] > threshold).long()

        predictions += predicted.tolist()

        truths += labels.tolist()

    tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()

    sensitivity = tp / (tp + fn)

    specificity = tn / (tn + fp)

    auc = roc_auc_score(truths, predictions)

    print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')

当然值变动了测试集,我们来试试效果,阈值改成0.3:

可以看到,特异度的份额被分到了灵敏度了,总体的AUC值变化不大。因此,性能基本上也就这样了。

最终的代码:

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import confusion_matrix, roc_auc_score

import pandas as pd

import numpy as np



# 加载数据

data = pd.read_csv('Entry model3.csv')  # 请用您数据的实际路径替换 'your_data.csv'

X = data.loc[:, 'X3':'X19'].values

y = data['X1'].values



# 数据预处理

scaler = StandardScaler()

X = scaler.fit_transform(X)



# 划分数据集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2338)



# 创建PyTorch数据加载器

train_data = torch.utils.data.TensorDataset(torch.Tensor(X_train), torch.Tensor(y_train))

test_data = torch.utils.data.TensorDataset(torch.Tensor(X_test), torch.Tensor(y_test))

train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True)

test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=True)



# 定义设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')



# 创建Transformer模型

class TransformerModel(nn.Module):

    def __init__(self, input_dim, output_dim, nhead=1):

        super(TransformerModel, self).__init__()

        self.encoder = nn.TransformerEncoder(

            nn.TransformerEncoderLayer(d_model=input_dim, nhead=nhead),

            num_layers=int(0.5 * input_dim) # 减少层数

        )

        self.norm = nn.BatchNorm1d(input_dim)  # 添加批归一化层        

        self.classifier = nn.Linear(input_dim, output_dim)

        self.dropout = nn.Dropout(1)  # 添加一个dropout层        





    def forward(self, x):

        x = self.encoder(x)

        x = self.classifier(x)

        return x





# 初始化模型和优化器

model = TransformerModel(input_dim=X.shape[1], output_dim=2).to(device)

optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=1e-5)



criterion = nn.CrossEntropyLoss()



# 训练模型

for epoch in range(20):

    for i, (inputs, labels) in enumerate(train_loader):

        inputs, labels = inputs.to(device), labels.to(device)

        

        optimizer.zero_grad()

        

        outputs = model(inputs)

        loss = criterion(outputs, labels.long())



        # 添加L1正则化

        #l1_lambda = 0.001

        #l1_norm = sum(p.abs().sum() for p in model.parameters())

        #loss = loss + l1_lambda * l1_norm

        

        loss.backward()

        optimizer.step()

    

    # 验证模型

    model.eval()

    with torch.no_grad():

        # 训练集

        predictions = []

        truths = []

        for inputs, labels in train_loader:

            inputs, labels = inputs.to(device), labels.to(device)

            output = model(inputs)

            _, predicted = torch.max(output.data, 1)

            predictions += predicted.tolist()

            truths += labels.tolist()

        

        tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()

        sensitivity = tp / (tp + fn)

        specificity = tn / (tn + fp)

        auc = roc_auc_score(truths, predictions)

        #print(f'Epoch {epoch+1} / 100, Training: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')

        

        # 测试集

        predictions = []

        truths = []

        for inputs, labels in test_loader:

            inputs, labels = inputs.to(device), labels.to(device)

            output = model(inputs)

            # 将输出结果用 softmax 函数转换为概率

            probabilities = torch.nn.functional.softmax(output, dim=1)

            # 调整阈值,例如设定阈值为 0.3

            threshold = 0.3

            predicted = (probabilities[:, 1] > threshold).long()

            predictions += predicted.tolist()

            truths += labels.tolist()

        tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()

        sensitivity = tp / (tp + fn)

        specificity = tn / (tn + fp)

        auc = roc_auc_score(truths, predictions)

        print(f'Epoch {epoch+1} / 100, Testing: Sensitivity: {sensitivity}, Specificity: {specificity}, AUC: {auc}')

三、总结

以上,Transformer框架能解决分类问题。不过在这个例子中,性能不太好,可能是因为数据量太小了吧(400多例而已)。反而,同样的数据,Xgboost略胜一筹(AUC:0.75),所以有时候,合适的模型才是最好的。

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值