自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(162)
  • 收藏
  • 关注

原创 我大学四年的项目经验

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-17 20:47:11 131

原创 我的大学四年项目经验

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-17 20:46:07 114

原创 ❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤

 在过去整整三年的时光里,我全身心地投入到学习与探索之中,将无数个日夜的钻研、思考与实践,凝结成了这篇博客。这篇总结犹如一座知识宝库,涵盖了Python、机器学习、深度学习等众多领域的精华内容。从20个硬核Python脚本,到机器学习中10种损失函数的全面梳理;从正则化算法、集成算法的总结,到聚类算法、SVM算法的深度剖析;从逻辑回归面试题的干货分享,到深度学习各算法优缺点及适用场景的探讨,再到Matplotlib的实用总结以及30个硬核数据集的呈现。每一个章节都倾注了我大量的心血,每一行文字都饱含着我对知

2025-06-16 08:33:06 1938

原创 七万字经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:29:49 106

原创 七万字项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:28:58 90

原创 七万字三年项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:27:47 75

原创 七万字项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:27:06 95

原创 七万字的大学三年项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:26:31 112

原创 七万字项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:25:50 69

原创 七万字 项目精华总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:25:18 120

原创 七万字大学三年项目总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:24:34 100

原创 七万字三年项目经验总结

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-16 08:23:55 97

原创 我七万字精华大总结。知识点合集。快来看

❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客

2025-06-15 19:10:03 80

原创 ❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤

  在过去整整三年的时光里,我全身心地投入到学习与探索之中,将无数个日夜的钻研、思考与实践,凝结成了这篇博客。这篇总结犹如一座知识宝库,涵盖了Python、机器学习、深度学习等众多领域的精华内容。从20个硬核Python脚本,到机器学习中10种损失函数的全面梳理;从正则化算法、集成算法的总结,到聚类算法、SVM算法的深度剖析;从逻辑回归面试题的干货分享,到深度学习各算法优缺点及适用场景的探讨,再到Matplotlib的实用总结以及30个硬核数据集的呈现。每一个章节都倾注了我大量的心血,每一行文字都饱含着我对

2025-06-15 19:08:16 1806

原创 机器学习过拟合和欠拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:14:22 572

原创 机器学习过拟合和欠拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:13:37 793

原创 机器学习过拟合和欠拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:13:04 895

原创 机器学习过拟合和欠拟合(上)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:12:16 817

原创 搞懂欠拟合VS过拟合(下)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:11:24 723

原创 搞懂欠拟合VS过拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-14 22:10:34 740

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-12 21:44:34 1039

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合(下)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-12 21:43:53 533

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-11 22:33:51 863

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合(下)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-11 22:33:38 429

原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》下

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-06-10 23:13:35 861

原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-06-10 23:13:22 1058

原创 线性回归可视化完全手册:10张关键图表助你深入理解模型(下)

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-06-08 16:42:42 1000

原创 线性回归可视化完全手册:10张关键图表助你深入理解模型

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-06-08 16:41:31 813

原创 深度学习算法大观园:从自编码器到强化学习,优缺点与实战场景全解析❤

今天演示了深度学习各分支算法的优缺点和适用场景!喜欢的朋友可以。

2025-06-07 22:05:18 781

原创 快来看deep seek深度学习的左右手互博[特殊字符]

2025-06-07 21:55:21 97

原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金 (下)

好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。

2025-06-06 14:57:29 622

原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金

好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。

2025-06-06 14:54:01 706

原创 【高端局】组合多个弱学习器达到性能跃升的硬核集成算法

今天介绍了5个机器学习中关于集成学习的总结,包括Bagging、Boosting、Stacking、Voting、深度学习集成喜欢的朋友可以起来!

2025-03-23 12:34:41 1453

原创 sklearn库的使用【无监督学习】

无监督学习是在没有标签的数据上训练的。其主要目的可能包括聚类、降维、生成模型等。以下是,这些算法都可以通过使用sklearn。

2025-03-23 12:30:27 1030

原创 【建议收藏】10 种图表线性回归

偏差-方差权衡是一个重要的概念,它告诉我们在训练模型时要权衡这两种误差,并避免过拟合(高方差、低偏差)或欠拟合(低方差、高偏差)。杠杆值反映了每个数据点对模型参数估计的影响程度,具有高杠杆值的数据点可能会对模型的拟合产生较大影响。它通过绘制一个自变量与因变量之间的关系图,同时控制其他自变量的影响,来帮助我们理解这个自变量独立于其他变量时对因变量的影响程度。通过观察Cook's 距离,我们可以找出这些数据点,并进一步分析它们对模型的影响,以优化模型的拟合效果。这种图表有助于我们优化模型并提高预测的准确性。

2025-03-22 07:09:50 1038

原创 【IT大学生必会的】 10 种图表线性回归

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-03-22 07:08:22 1103

原创 【纯干货】线性回归10 种图表大总结

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-03-19 15:09:05 1008

原创 【纯干货】机器学习欠拟合和过拟合总结

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-03-19 15:08:12 765

原创 【新生必会】30个较难Python脚本,建议收藏。

本篇较难,;接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!

2025-03-18 07:17:17 1126

原创 【新生必会】20个硬核Python脚本

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-03-18 07:15:30 801

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除