- 博客(162)
- 收藏
- 关注
原创 ❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤
在过去整整三年的时光里,我全身心地投入到学习与探索之中,将无数个日夜的钻研、思考与实践,凝结成了这篇博客。这篇总结犹如一座知识宝库,涵盖了Python、机器学习、深度学习等众多领域的精华内容。从20个硬核Python脚本,到机器学习中10种损失函数的全面梳理;从正则化算法、集成算法的总结,到聚类算法、SVM算法的深度剖析;从逻辑回归面试题的干货分享,到深度学习各算法优缺点及适用场景的探讨,再到Matplotlib的实用总结以及30个硬核数据集的呈现。每一个章节都倾注了我大量的心血,每一行文字都饱含着我对知
2025-06-16 08:33:06
1938
原创 我七万字精华大总结。知识点合集。快来看
❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤-CSDN博客
2025-06-15 19:10:03
80
原创 ❤七万字精华大合集!三年沉淀:从Python脚本到深度模型——构建数据科学全栈硬核知识体系。❤
在过去整整三年的时光里,我全身心地投入到学习与探索之中,将无数个日夜的钻研、思考与实践,凝结成了这篇博客。这篇总结犹如一座知识宝库,涵盖了Python、机器学习、深度学习等众多领域的精华内容。从20个硬核Python脚本,到机器学习中10种损失函数的全面梳理;从正则化算法、集成算法的总结,到聚类算法、SVM算法的深度剖析;从逻辑回归面试题的干货分享,到深度学习各算法优缺点及适用场景的探讨,再到Matplotlib的实用总结以及30个硬核数据集的呈现。每一个章节都倾注了我大量的心血,每一行文字都饱含着我对
2025-06-15 19:08:16
1806
原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》下
另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。
2025-06-10 23:13:35
861
原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》
另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。
2025-06-10 23:13:22
1058
原创 线性回归可视化完全手册:10张关键图表助你深入理解模型(下)
至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。
2025-06-08 16:42:42
1000
原创 线性回归可视化完全手册:10张关键图表助你深入理解模型
至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。
2025-06-08 16:41:31
813
原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金 (下)
好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。
2025-06-06 14:57:29
622
原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金
好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。
2025-06-06 14:54:01
706
原创 【高端局】组合多个弱学习器达到性能跃升的硬核集成算法
今天介绍了5个机器学习中关于集成学习的总结,包括Bagging、Boosting、Stacking、Voting、深度学习集成喜欢的朋友可以起来!
2025-03-23 12:34:41
1453
原创 sklearn库的使用【无监督学习】
无监督学习是在没有标签的数据上训练的。其主要目的可能包括聚类、降维、生成模型等。以下是,这些算法都可以通过使用sklearn。
2025-03-23 12:30:27
1030
原创 【建议收藏】10 种图表线性回归
偏差-方差权衡是一个重要的概念,它告诉我们在训练模型时要权衡这两种误差,并避免过拟合(高方差、低偏差)或欠拟合(低方差、高偏差)。杠杆值反映了每个数据点对模型参数估计的影响程度,具有高杠杆值的数据点可能会对模型的拟合产生较大影响。它通过绘制一个自变量与因变量之间的关系图,同时控制其他自变量的影响,来帮助我们理解这个自变量独立于其他变量时对因变量的影响程度。通过观察Cook's 距离,我们可以找出这些数据点,并进一步分析它们对模型的影响,以优化模型的拟合效果。这种图表有助于我们优化模型并提高预测的准确性。
2025-03-22 07:09:50
1038
原创 【IT大学生必会的】 10 种图表线性回归
至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。
2025-03-22 07:08:22
1103
原创 【纯干货】线性回归10 种图表大总结
至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。
2025-03-19 15:09:05
1008
原创 【新生必会】30个较难Python脚本,建议收藏。
本篇较难,;接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!
2025-03-18 07:17:17
1126
原创 【新生必会】20个硬核Python脚本
另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。
2025-03-18 07:15:30
801
空空如也
田忌赛马问题】,用c语言实现蛮力法实现的全排列算法”
2024-06-29
5稀疏支持向量机..
2024-06-25
6核贝叶斯支持向量机
2024-06-25
贝叶斯Ridge回归
2024-06-24
机器学习各个算法的优缺点
2024-06-23
argparse库33333
2024-06-22
命令行应用 - argparse
2024-06-21
机器学习正则化算法的总结
2024-06-18
机器学习中的神经网络重难点
2024-06-17
机器学习中的神经网络重难点
2024-06-16
关于机器学习的向量机,都讲了什么
2024-06-14
关于支持向量机,他的重难点是什么?
2024-06-12
关于深度学习,有什么小窍门,更好的学习
2024-06-11
深度学习各算法的优缺点和适用场景
2024-06-08
给我讲清楚机器学习库
2024-06-07
scikit-learn有什么用?怎么用呢?什么场景下用
2024-06-05
如何更好更快速的学习完SVM算法
2024-06-04
关于机器学习,有什么更好的建议?
2024-06-03
机器学习算法中,那些属于线性回归算法(相关搜索:机器学习算法)
2024-06-02
机器学习中,卷积怎么用更好(语言-python)
2024-06-01
关于#python#的问题,请各位专家解答!
2024-05-31
TA创建的收藏夹 TA关注的收藏夹
TA关注的人